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Abstract 
 

In this paper, we present Monte-Carlo simulation for a 

linearized wheelchair model that use Linear Quadratic 

Controller. The controller has two weighting matrices 

which are Q and R. These weighting matrices are important 

to select optimal gain matrix value. Trial and Error method 

has been usually used in Linear Quadratic Controller 

because of simplicity but very difficult to choose the best 

values that have good control performances. Without giving 

up the simplicity of the Trial and Error method, we propose 

Monte-Carlo method.  So, many closed loop simulations 

using Monte-Carlo method, optimal gain matrix value is 

calculated. Effectiveness of the both method is discussed 

comparatively. The results indicate that the Monte-Carlo 

method are more powerful to select optimal gain matrix and 

better performance for the stability of the system. 

 

1. Introduction 
 

Most of the elderly people have difficulties in using manuel 

wheelchairs due to partial paralysis and tremors. The electric 

wheelchair can provide a solution, but it is not appropriate for 

older adults with a cognitive impairment, such as dementia, as 

these individuals do not have the cognitive capacity required to 

effectively and safely maneuver the wheelchair. Also, it is very 

difficult for this type of disabled people to control the electric 

wheelchair with a joy stick. Assistive technologies and robotic 

wheelchairs have been developed to provide reliable and safe 

environment for this population [1].   

  Many studies in literature focus on robotic wheelchairs, 

among which are fuzzy controller based robotic wheelchairs [2, 

3], studies that use PID controller algorithms [4, 5], and many 

more. Combination of multiple control methods is also 

employed for the electric wheelchair control such as fuzzy-PID 

controllers [6, 7]. Although many researches have been carried 

out on controller design for the wheelchair, Linear Quadratic 

Regulator (LQR) design using Monte-Carlo simulation method 

has not been applied to this problem. 

LQR control design using Monte-Carlo simulation is 

reported on the pendulum model in literature. Results of the 

mentioned study proves that LQR controller technique using 

Monte-Carlo simulation method has advanced outcomes for 

stability of system [8]. So, we propose to apply the Monte-Carlo 

simulation method with LQR controller on our linearized 

wheelchair model. 

Most of the time, the design parameters of LQR are chosen 

by Trial and Error method and depend a lot on the designer’s 

experience [9, 10]. But it is often cumbersome and tedious to 

tune the controller gains via Trial and Error method. There are 

some attempts such as Bryson rule and Genetic Algorithm in 

literature, but they have big computational load [11, 12]. So, we 

propose Monte-Carlo simulation as a more powerful method 

compared to the Trial and Error, which improves performance 

without giving up the simplicity. 

The paper is organized as follows. Section 2 presents the 

linearized model of the wheelchair. Section 3 includes controller 

design and Monte-Carlo simulation method. Simulation model 

and results are presented in Section 4. Ultimately, conclusion 

and discussion is given in Section 5. 

 

2. Linearized Model of Wheelchair 
 

 
 

Fig. 1. Electric wheelchair 

 

A simple diagram of the electric wheelchair can be seen in 

Fig. 1. Electric wheelchair moves with electric power rather than 

manual power. The wheelchair is operated via a joy-stick 

interface in most of the electric wheelchairs. In today’s 

technology, there are robotic wheelchairs that use assistive 

technologies instead of the joy-stick interface. Dynamically 

robotic wheelchair model is similar to that of the electric 

wheelchair. They only differ in the interface components like 

camera, sensor, touch screen, etc. The parameters that effect the 

dynamics of wheelchair motion like the chassis of the 

wheelchair, user mass, DC motor torque are common in robotic 

wheelchair and standard electric wheelchair. Thus, the dynamic 

model of the electric wheelchair can be used for robotic 

wheelchair model as well. Selecting the proper state variables 

and system parameters is a key issue in modeling. Here, we 

present vision based robotic wheelchair model and we use state 



variables of displacement  velocity , wheelchair directional 

angle , and its derivative  in respective order.  

 Dynamic wheelchair linearized state space model is given 

below [13]. The linearized wheelchair model can be arranged in 

state space form as Equation (1) 

 

                                                               (1) 

  

where 

                                         ,    

 

 
 

 
 

 
 

 
 

3. Controller Design 
 

3.1. LQR Design with Trial and Error  
 

     As a state-feedback controller LQR algorithm is applied on 

the wheelchair model. A state feedback law that minimized the 

cost of functional given in Equation (2) is found by the optimal 

control approach.  

                                                 (2) 

One of the weighting matrices  is used to penalize bad 

performance and the other weighting matrice  is used to 

penalize actuator effort. Their values calculated using Trial and 

Error method are assigned as given below. 

 

                            (3) 

 

      As a result, the state feedback gain matrix   that 

minimizes the cost using Trial and Error method is calculated as 

follows. 

 

     (4) 

 

 

 

3.2. LQR Design with Monte-Carlo Simulation 

Method  
 

Monte-Carlo simulation is a computational technique that 

uses repeated random samples of variables to analyze behavior 

of the system. In our study, Monte-Carlo simulation is tested on 

the diagonal constants of  and  matrices, represented by , 

, ,  and . Range of c values are between in 1-100. 

 

                                                        (5) 

 

      Monte-Carlo simulation outcome is obtained by using 

randomly 1000 iteration of the given diagonal constants. Using 

the Monte-Carlo simulation results, optimal value of the gain 

matrix for Monte-Carlo simulation method is calculated. 

      The linearized state-space model has four state variables ( , 

, , ), so the feedback gain matrix  is obtained by 

Algebraic Riccati equation [9] and is designed to have four 

control parameter values as its elements. Fig. 2 shows iterations 

for the first element of the gain matrix. These iterations are 

applied for 1000 values. Blue circles indicate the values of gain 

matrix and red line points out the mean of the elements of the 

gain matrix. Yellow line represents the standard deviation of the 

elements of the gain matrix. The same iteration outcomes for the 

other three elements of the feedback gain matrix are similarly 

presented in Figs. 4,6 and 8, respectively representing the 

second, third and fourth elements. 

      In Fig. 3, we present the distribution of the 1000 iterations 

and their intensified values for the first control parameter. It is 

observed from the inspection of Fig. 3 that 480 values out of 

1000 lie in the interval of 0.9747. Fig. 5 shows that 430 values 

out of 1000 are in the interval of 11.2725 for the second control 

parameter. Similarly, for the third control parameter Fig. 7 

reveals that -143 is the most intensified value as 650 out of 1000 

values. Finally, 960 values out of 1000 are in the 0.8637 interval 

as shown in Fig. 9 for the fourth control parameter. 

Consequently, the most appropriate control parameters in the 

feedback gain matrix are determined through the Monte-Carlo 

simulation method and the gain matrix is determined as follows:  

 

                (6) 

 

 
 

Fig. 2. Iterations for first element of optimal gain matrix 



 
 

Fig. 3. Iterations for first element of optimal gain matrix (bar 

chart) 

 

 
 

Fig. 4. Iterations for second element of optimal gain matrix  

 

 
 

Fig. 5. Iterations for second element of optimal gain matrix (bar 

chart) 

 

 
 

Fig. 6. Iterations for third element of optimal gain matrix  

 

 
 

Fig. 7. Iterations for third element of optimal gain matrix (bar 

chart) 

  

 
 

Fig. 8. Iterations for fourth element of optimal gain matrix 

 



 
 

Fig. 9. Iterations for fourth element of optimal gain matrix (bar 

chart) 

 

4. Simulation Model and Results 
 

     The simulations are implemented using the linearized 

wheelchair model provided in Section II in state-space form 

with A, B, C and D matrices. Model parameters used in 

simulations and their values are given in Table 1.  

 

Table 1. Parameter of wheelchair Table 1  Parameter of Wheelchair 

 

Parameter  Description Value Units 

 Gravitation 9.81  

 Wheel radius 0.1778 m 

 Wheel mass 2.8 kg 

 Body mass with load 75.4 kg 

 Wheel inertia 0.03 kg  

 Body inertia 0.44 kg  

 Distance from body’s COG 0.52 m 

 Motor torque 0.75 Nm/A 

 Back EMF 0.75 V/(rad/s) 

R Terminal Resistance 2.38 Ohms 
  
     

     Three simulations are carried out and results are presented 

with the purpose of comparing the Trial and Error and Monte-

Carlo simulation methods for LQR design. Firstly, step 

responses of the system under the two methods for state variable 

 are shown in Fig. 10. It is clearly revealed by the simulation 

responses in Fig. 10 that the feedback system designed using the 

Monte-Carlo simulation method reaches the desired value in 

significantly shorter time. Secondly, tracking performances of 

both methods for state variable  are analyzed. Fig. 11 shows 

that Trial and Error is weaker in tracking the square wave 

reference path. Purple line that represents the Monte-Carlo 

method response is able to track the black reference line with 

better accuracy. Green line represents the Trial and Error 

method response and it is visible especially in the second cycle 

of the square wave test that this method is not effective as 

Monte-Carlo simulation in tracking the square wave reference. 

Additionally, error index values are calculated to validate the 

performances of the two methods numerically. Indices of Mean 

Squared Error (MSE), Integral Absolute Error (IAE) and 

Integral Time Absolute Error (ITAE) are calcuated and 

presented in Table 2. The error index values show that Monte-

Carlo simualtion method yields significantly better performance 

than Trial and Error method. 
 

 
 

Fig. 10. Step responses of Monte-Carlo simulation and Trial and 

Error methods 

 

 
 

Fig. 11. Theta tracking path for Monte-Carlo simulation and 

Trial and Error methods 

 

      Lastly, a square wave test signal is applied to the system as a 

disturbance input, and attenuation of disturbance for both 

methods is examined. Fig. 12 shows the resuts of disturbance 

attenuation tests for Monte-Carlo simulation and Trial and Error 

methods. Also, error index values of the disturbance attenuation 

test results are presented in Table 3. It is clear that Monte-Carlo 

simulation method has better performance in terms of IAE and 

ITAE over Trial and Error method. However, the MSE error 

index is larger for the Monte-Carlo simulation response in 

distubance attenuation test. It should be noted here that MSE 

provides a measure of average error in performance, while IAE 

and ITAE represent measures of accumulation of error in time, 

with an additional emphasis on the response speed in the latter. 

Consequently, overall performance of Monte-Carlo simulation 

method in disturbance attenuation is more satisfactory than Trial 

and Error method especially when error accumulation over time 

is considered.  

 



 
 

Fig. 12. Disturbance attenuation tests for Monte-Carlo 

simulation and Trial and Error methods 

 

Table 2. Error index values for Fig. 11 
 

Reference 

Wave  
Design Method MSE IAE ITAE 

Square 
Monte-Carlo 0.0004 15.84 1630 

Trial and Error 0.0005 16.49 1683 

 

Table 3. Error index values for Fig. 12 
 

Disturbance  Design Method MSE IAE ITAE 

Square 
Monte-Carlo 0.027 351.7 6.10x  

Trial and Error 0.015 355.5 6.18x  

 

5. Conclusions 
 

      This paper presents the results of the study on LQR design 

for electric wheelchair control using Monte-Carlo simulation 

method. Optimal feedback gain matrix in LQR depends on the 

selection of  and  matrices, which plays an important role to 

control the wheelchair efficiently. This task is achieved by 

Monte-Carlo simulation method with 1000 iterations in the 

study. Monte-Carlo simulation method is compared with Trial 

and Error, which is commonly used in similar LQR design 
problems. The comparison is realized on a computer simulation 

platform using linearized wheelchair model for step response, 

trajectory tracking and disturbance attenuation tests. The test 

outcomes reveal that Monte-Carlo simulation method has some 

improvement in performance compared to Trial and Error 

method. Overall, the results indicate that Monte-Carlo 

simulation proves to be an important tool for finding the optimal 

feedback gain matrix in LQR control of electric wheelchairs, 

with enhanced reference tracking and disturbance attenuation 

performances. The results provide important insights into 

wheelchair control problem, and contributes to developing new 

technologies for safety and comfort of disabled people.  
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