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Abstract

Hardware Trojan insertion during the manufacturing phase
is a crucial problem for chip designers. There are several ap-
proaches to detect the Trojan in circuits without destructing
the chip structure. One of them is delay based hardware Tro-
jan detection. However, this technique suffers deeply from
the variations and it is a question whether the Trojans can be
detected as the variations hide the effect of the Trojan. This
paper, rather than simulation tools, performs experiments on
actual FPGA chips to demonstrate and verify the contribution
of both inter and intra die variations as well as the effect of
hardware Trojan on delay. Lastly, the ability of delay based
Trojan detection backed up by the ring oscillator is investi-
gated with different sizes of the Trojan.

1. Introduction

Due to the economical reasons, most of the manufacturing is
handled by far-east countries and it is very hard to perform all
manufacturing domestically even for the most developed coun-
tries. As a result, hardware Trojan (HT) insertion by an adver-
sary during the integrated circuit manufacturing phase is a crucial
problem. The inserted Trojans can easily cause circuit failure or
change its functionality, which may be disastrous especially for
the security critical designs.

There are lots of different approaches that deal with hardware
Trojan detection problem [1, 2], but most of the literature rely
on simulations mostly based on Electronic Design Automation
(EDA) tools from companies such as Cadence and Synopsys.

The researchers also work up the power based HT detection
methods [3], which try to detect Trojan existence by investigating
its trace on supply current whereas delay based detection methods
try to reveal delay differences due to the Trojan insertion. The
main issue of the delay based HT detection is the effect of the
variations that can hide the effect of HT.

There are different delay based detection methods in the liter-
ature to overcome this problem [4–9]. For that purpose they ap-
ply different variation models some of which are loose and show
their detection rates according to the simulation results. However,
the results are as accurate as the underlying variation models and
utilized tools. It is claimed in [10] that assuming a realistic vari-
ation model it is too difficult to dect the Trojans solely looking at
path delays. In order to verify this difficulty, our goal is to detect
the actual effect of variations as well as the effect of the inserted
Trojan on delay utilizing actual manufactured chips. Therefore,
we carry out tests on Intel FPGA Cyclone-V chips and reveal the
difficulty of delay based Trojan detection. Moreover, we experi-
mentally show that simple variation capturing methods like ring
oscillator proposed by [3] for power based Trojan detection, does

not avail delay based Trojan detection on actual FPGA chips un-
less the Trojan is too large.

Section 2 starts with the problem formulation, Section 3 ex-
plains the circuitry and measurement method to be used for the
experiments, Section 4 reveals the actual delay variations accord-
ing to the FPGA delay measurements, Section 5 shows the effect
of the Trojan on delay, Section 6 demonstrates the results when a
ring oscillator is used to suppress variations, Section 7 clarifies the
effect of Trojan size on detection performance and lastly Section
8 summarizes the results.

2. Problem Formulation

A path in a digital circuit is composed of gates and its delay
is measured as the sum of individual delays of the gates included
in that path. However, if an adversary inserts a hardware Trojan
into a path, the new path delay has to contain the delay of the
payload part of the Trojan as it is along the attacked path. Fig. 1
demonstrates such a Trojan-inserted path [10].
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Fig. 1. Hardware Trojan Model.

The payload part is inserted into the path and directly affects
the delay. The trigger part is for the Trojan to stay in passive
state so that the payload does not change the functional output of
the circuit and thus, it cannot be detected by conventional logic
tests. It inverts the path signal only whenever the output of the
trigger gate becomes logic-1. However, delay based methods are
advantageous in the sense that they can detect the Trojan even in
the passive state. Because the payload part is already inside the
path. As a result, the delay of the Trojan inserted path becomes:

dP̂(X) =
k∑

i=1

dni (X) + dnload (X) (1)

The aim of delay based hardware Trojan detection is to detect
that additional component (dnload (X)) belonging to the Trojan.

In (1), X is a vector that denotes the circuit parameters like gate
length and threshold voltage. These parameters change from chip
to chip (inter die) and even in the same chip (intra die). The cause
of that change is the non-negligible and unavoidable manufactur-
ing process variations. As a result, the delay of a path may differ,



which results in delay variations. These delay variations can be so
high that they can hide the additional delay of the inserted hard-
ware Trojan, i.e. dnload (X).

It is very difficult to model process variations. The models are
either loose or demanding too much processing power to get the
resultant effect on circuit delay. In this paper, instead of using
variation delay models and simulation tools, in order to see the
actual effect of the process variations and the hardware Trojan,
we measure the delays of the paths on actual FPGA chips. Before
presenting the results, the circuitry used for measuring the path
delays should be explained.

3. Path Delay Measurement Circuitry

In order to compute the delay of a path inside an FPGA, a
simple sequential circuit is designed with the state machine shown
in Fig. 2. This circuit is connected to the input and output of
the path, delay of which is desired, i.e. the path under test. All
the side inputs of the gates on the path under test are initially set
to non-controlling values1, therefore, each input change has to
propagate until the end of the path, i.e. until the output.

Fig. 2. Simple State Machine.

As Fig. 2 demonstrates, in the first state, we apply a logic-0 to
the input of the path under test and wait until the output gets stabi-
lized. If it is a non-inverting path it stabilizes at logic-0, else if it is
an inverting path it stabilizes at logic-1. Then, in the second state
we apply logic-1 to the input and meanwhile we start a counter.
The last state waits for the resultant change at the output and stops
the counter when that occurs. The value at which the counter is
stopped provides us the number of cycles in between the input
change and the corresponding output change. If we multiply that
value with the clock period, we get the delay of the path under
test.

The clock speed is taken to be the maximum speed allowed
by the FPGA under test for best resolution. Assuming that max
permitted clock speed is represented by fmax and the final value
of the counter is N, the resultant path delay becomes N/fmax. The
minimum delay difference that can be computed by such a setup
is 1/fmax, which puts a lower limit for the size of the path whose
delay is measurable.

As an example path, we use a path from c7552 that belongs to
well-known ISCAS’85 benchmark circuits [11]. The path has 35
logic gates including NAND, NOR, AND, OR gates and NOTs.
Actually, the types of the gates can not affect the result for FPGA
as all gate types are converted to LUTs inside FPGA.

There is a problem in putting that path inside FPGA with con-
necting all side inputs to non-controlling values, because the opti-
mization tools of FPGA software, i.e. Quartus, automatically ap-
plies optimization and as a result, converts the path into a single
buffer for non-inverting paths and into an inverter for the invert-

1For AND, NAND gates 1; for OR, NOR gates 0.

ing paths. To avoid all the optimization steps, /*synthesis
keep*/ must be inserted as a comment line for each row in the
Verilog where an input or an output is defined.

We utilize Intel Cyclone-V 5CEBA4F23C7 FPGAs that are
constructed with 28nm process technology and availing maxi-
mum 250MHz clock speeds. Although the 35 gate path we picked
is one of the long paths in ISCAS’85 benchmark, the resolution
of 4ns (1/250MHz) is too high to precisely measure the delay of
that path, which has a delay of about 8ns. Although, we roughly
measure the delay of the path, it would be impossible to measure
the extra delay caused by a small Trojan shown in (1). In order to
be able to measure both path’s and the Trojan’s delay, we serially
connect the multiple copies of the same path and then measure
the delay of these serially connected paths, lastly divide the total
delay to the number of copies to get the delay of the single path.

4. Effect of the Variations on Delay

The delay variations caused by manufacturing process are sep-
arated into two: the variations inside the same chip, i.e. intra-die
variations and the variations among different chips of the same
circuit, i.e. inter-die variations.

4.1. Intra Die Variations

In order to measure the intra-die delay variation component,
we first put the same path on 8 different locations in the same
FPGA chip as shown in Fig. 3. Each color corresponds to a dif-
ferent path. Each path actually consists of 50 copies of the same
path connected in serial so that we can almost precisely measure
their delays with 250MHz clock. The resultant path delays are
shown in Table 1. The first row is the total measured delay for
50 serially connected path copies and the second row is the actual
delay of the single path. This table reveals that the delay variation
due to the intra-die component has 3σ/µ ratio of 2.96%.

Fig. 3. Layout of 8 paths in different locations.

Table 1. Path Delays (in ns) in 8 different locations.

ID L1 L2 L3 L4 L5 L6 L7 L8
50P 428 436 436 440 432 436 428 436
1P 8.56 8.72 8.72 8.8 8.64 8.72 8.56 8.72
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Fig. 4. Path Delays measured on 20 FPGAs.

4.2. Inter Die Variations

In order to measure the inter die variation component, the same
path is uploaded to different FPGA chips and the delays are mea-
sured. We use 20 chips and the results are shown in Figure 4 as
a bar plot. The path delays are in between 5ns and 10ns. The
standard deviation (σ) and mean (µ) of this distribution result in
a 3σ/µ ratio of 43.5%, which is too far ahead of intra-die varia-
tions. One reason for that dramatic difference is that these FPGAs
do not have to be from the same wafer or the same lot.

As the increase in the delay of the circuit can be either from
the Trojan or the variation, such delay variations open up a room
for hardware Trojans to hide inside.

5. Effect of the Hardware Trojan on Delay

The effect of the variation on actual 28nm FPGA chips is shown
in the previous section. In this section, the effect of the inserted
hardware Trojan is studied. For that purpose, we insert an XOR
gate as the payload of the Trojan [7, 12] shown in Fig. 1. Of
course, we insert the Trojan into each copy of the path under test
for fair results.

Fig. 5 shows us 10 Trojan-free path delays and 10 Trojan-
inserted path delays each corresponding to a different FPGA. This
figure shows that a Trojan-inserted path can even have a much
smaller delay than a Trojan-free path. For instance, FPGA-3 has
a Trojan-free path delay of about 9ns whereas FPGA-12 has a
Trojan-inserted path delay even smaller than 6ns. This shows that
variations can perfectly hide the effect of the Trojan and that the
detection looking solely at path delay is impossible as argued and
supported with Spice simulation results in [10].
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Fig. 5. Path delay measurements with HT added to half of the
FPGAs.

Moreover, if we want to discriminate Trojan-inserted ones from
the Trojan-free ones, even a carefully picked threshold as shown
with a solid black line in Fig. 5 results in 3 false negatives and
4 false positives among 20 chips. False positives are labeled as
Trojan-inserted although there is no Trojan and false negatives
are the ones that are labeled as Trojan-free although they have
Trojan. However, the tester is unable to pick such a threshold and
even may assume all chips are Trojan-free as their delays are in-
termixed into each other and the effect of Trojan is totally hidden
under the process variations. In order to handle that problem the
effect of the variations must be suppressed, which is explained
next.

Please note that throughout the paper the Trojan-free chips are
shown by green bars and Trojan-inserted chips are shown by red
bars.

6. Ring Oscillator to Suppress Variations

A ring oscillator (Fig. 6) is composed of odd number of seri-
ally connected inverters and used to determine the delay by solely
looking at the frequency of its output, as its output continuously
triggers with a period two times the delay of the ring oscillator
(RO).

Fig. 6. A generic ring oscillator circuit.

Fig. 7. Overview of the experimental setup.

We use ring oscillators with 35 inverters to give an idea about
the delay of a specific FPGA chip. In other words, it is utilized
to represent how the chip, that it is located in, is affected from
the variations. Therefore, we put an additional ring oscillator to
each of the 20 FPGA chips and then measure their delays. The
experimental setup is shown in Fig. 7 and the FPGA layout after
occupying the circuit is shown in Fig. 8.

Fig. 8. FPGA Layout of the 50 copied path & ring oscillator.

As the ring oscillator is affected similarly from the inter die
variations, a division of path delay to the ring oscillator delay for
each chip can yield a variation cancellation. Therefore, for each



chip we divide delay of the path under test to the delay of the ring
oscillator. The resultant 20 delay ratios are shown in Fig. 9.
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Fig. 9. Path delay ratios with HT added to half of the FPGAs.

Actually, the resultant delay ratios corresponding to the Trojan-
inserted chips tend to be larger than the Trojan-free chips. Yet, it is
still very difficult to distinguish the chips. For instance, if we put
an almost perfect threshold shown as a black solid line in Fig. 9,
then we still have 1 false positive and 2 false negatives among 20
chips, which is somewhat better than Fig. 5 results, where path
delay is used alone.

We repeat the same experiment, but this time instead of the last
10 FPGAs, we insert the Trojan to the first 5 FPGAs. The resultant
ratio graph is shown in Fig. 10. Again even a very well picked
threshold shown as a solid black line results in 6 false positives.

Moreover, the tester in the actual case can not see the colors of
the bars. Only the 20 delay ratio computations can be collected.
Therefore, the threshold value to be used to distinguish Trojan-
inserted chips from Trojan-free ones is unknown.

One way could be to test whether the distribution of the delay
ratio measurements is bimodal. Because if the effect of the Trojan
is high enough, the Trojan-free and Trojan-inserted chips would
result in delay ratio distributions clustered in two distinct centers.
This means there is an inserted Trojan in some of the chips. How-
ever, Hartigan’s bimodality test [13] does not return a bimodal dis-
tribution meaning that it cannot understand that among the chips
some of them are Trojan-inserted.

7. Size of the Trojan

The size of the Trojan and amount of variations are the main
causes for that result. Because, the Trojan size with respect to
the path size in these experiments is about 2.7%, which is smaller
than the intra die variations. Using a larger Trojan payload than
Fig. 1 can yield much better detection scenarios and bimodality
results at the end of Hartigan’s tests.
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Fig. 10. Path delay ratios with HT added to quarter of FPGAs.

For instance, if we use two serial XORs instead of one the
resultant delay ratios are as shown in Fig. 11. The result is getting
better if the tester can pick the threshold shown in the figure. But
still there are two false negatives. On the other hand when we
increase the number of serial XORs up to three, the resultant delay
ratios can finally provide a perfect separation.
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Fig. 11. Two serial XORs are used as Trojan
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Fig. 12. Three serial XORs are used as Trojan

When we check the distributions of delay ratios coming from
20 chips, the resultant histograms for 1 XOR, 2 XOR, 3 XOR and
5 XOR Trojan cases are shown as HTx1, HTx2, HTx3 and HTx5
respectively in Fig. 13. It can be deduced from the figure that the
bimodality of the resultant delay ratio distribution is increasing
with the increasing HT size, which is also verified by Hartigan
results. Because, the p values given by the Hartigan’s test are
shown in Table 2, where p values smaller than 0.1 shows the
bimodality of the distribution [10]. As a result, for HTx5 case,
the bimodality and therefore the Trojan is detected and thus, a
threshold can easily be found as the middle of two distributions to
distinguish Trojan-inserted circuits.
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Fig. 13. Delay ratio histograms for different Trojan sizes

Another bimodality test in the literature is Warren Sarle’s bi-
modality test [14], in which bimodality coefficients larger than
0.55 means a bimodal or multimodal distribution and lower than
that value mean a unimodal distribution. When the distributions



of Fig. 13 are given to Sarle’s test, the results are in Table 2. Sim-
ilar to the dip test, the results are getting much closer to a bi-
modal distribution while the Trojan size increases but only the
HTx5 case is labeled as bimodal.

Table 2. Bimodality Test Results

Bimodality Test HTx1 HTx2 HTx3 HTx5
Hartigan 0.61 0.35 0.21 0

Sarle 0.29 0.42 0.52 0.66

However, even a payload of a single XOR gate (HTx1), is
enough to hide Trojan from logic tests and to change the func-
tionality of the circuit. Therefore, a detection scheme must take
this into account and find more sophisticated methods to get rid
of the variations as in [10].

8. Conclusions

From the measurements on 20 FPGA chips, it can be con-
cluded that firstly, the effect of delay variations is overwhelming,
especially the inter die component and that the variations can eas-
ily hide the effect of hardware Trojans with payloads as small as
one XOR gate.

Even if we insert an additional ring oscillator to the circuit in
order to capture the variations, we still can not detect the Trojans
as the resultant delay ratios pass from Hartigan’s test as a uni-
modal distribution, which means that the resultant delays seem to
be clustered in one center and which means that inserted Trojans
are not detected although half of the chips have inserted Trojans.
The detection scheme is getting better with the increasing Trojan
size. However, the adversary does not need large payloads for
hiding and constituting the Trojan. This shows the necessity of
sophisticated delay based detection methods to suppress the vari-
ations and reveal the effect of hardware Trojan in the circuit.
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