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Abstract

A novel approach to motion detection is presented in our study,
utilizing a 3 × 3 Gaussian image filtering technique. Inspira-
tion is drawn from the human visual system, particularly the
human retina, and a straightforward Complementary Metal
Oxide-Semiconductor (CMOS) circuit design is employed. Gau-
ssian image filtering and noise mitigation are achieved through
convolution and masking operations. The challenge lies in
translating these mathematical operations into hardware us-
ing basic electronic components like current mirror and adder
circuits. Additionally, enhancements are made to the 2-D pixel
sensor array, optimizing the commonly used pixel circuitry.

Our imaging technique conducts preliminary image pro-
cessing before analog-to-digital conversion, supporting subse-
quent digital image processing stages in camera systems. We
introduce an 8-MOSFET filtering cell array for retinomor-
phic analog image filtering. These cells collaborate to filter
image signals received from the pixel circuit array. Our analy-
sis is based on two moving scenes with a resolution of 150×150
pixels, and we compare the results with theoretical outcomes
from digital image processing techniques. We utilize CMOS
0.18µm technology parameters for our proposed analog cir-
cuit structure.

1. Introduction

In this study, we aim to improve imaging systems by optimiz-
ing their output and reducing frame processing time. Common
imaging systems predominantly process images digitally due to
ease of implementation and data storage [1]. However, digital
processing can introduce time delays [2]. Analog image process-
ing, on the other hand, offers faster response times and shares sim-
ilarities with the human eye’s biological imaging system. There
is growing interest in mimicking biological image processing and
developing bio-inspired retinomorphic optical sensing technology
to replicate the efficiency of the human retina. Researchers like
Effrosyni et al. [3] have mathematically demonstrated retinal im-
age processing using Gaussian Weighted Difference (WDoG) fil-
ters, while Sengupta et al. [4] have implemented a retinomorphic
system in Matlab for transforming videos into sparse dynamic
events using peak detection and selectable filters. Katic et al. [5]
demonstrated a retinal-inspired edge detection imager capable of
quantizing high-frequency images over multiple frequency bands,
providing detailed image reconstructions. Yildirim et al. [6] de-
veloped an analog image processing chip utilizing current mirror
circuits as a 2-D Laplace filter for edge detection and enhance-
ment. There are also innovative approaches like Song et al.’s [7]

Processing in Pixel (PIP) scheme, which applies convolution op-
erations before transmitting the readout signal to improve image
reading speed with lower power consumption. Our goal is to alle-
viate the burden on image processors by shifting a portion of the
image processing from digital to the analog component of the sys-
tem. Gaussian image filtering is a fundamental method that typ-
ically requires digital software due to the substantial input data
involved. In our study, we delve into Gaussian image filtering
without digital processing, harnessing an analog electronic circuit
inspired by the biological retina’s intricate interconnections be-
tween photoreceptors and neighboring cells. This novel approach
not only achieves noise reduction but also enables effective edge
detection. Our work paves the way for future projects, encour-
aging the development of innovative hardware implementations
rooted in Gaussian filtering principles.

The structure of this article is as follows: Section 2 provides an
overview of the Gaussian filter principle. Section 3 delves into the
proposed system architecture. Section 4 analyzes and discusses
the experimental results, and the concluding section summarizes
the findings.

2. Gaussian Smoothing

Gaussian smoothing, also known as Gaussian blur, is a com-
mon image processing technique used to simplify images and re-
duce noise [8]. Its name comes from the use of the Gaussian
function to smooth the image. The primary purpose of this Low
Pass Filter (LPF) is to reduce the variation in high-frequency im-
age data, which can be disruptive to certain image feature ex-
traction algorithms [9]. Mathematically, Gaussian smoothing in-
volves convolving the image with a Gaussian function. To con-
struct the kernel for this convolution, we use Equation (1) for the
1-D Gaussian function:

G(x) =
1√

2 ∗ π ∗ σ2
∗ e– x2

2∗σ2 (1)

Here, π represents the standard deviation. For image processing,
we use the 2-D Gaussian function, as shown in Equation (2):

G(x, y) =
1

2 ∗ π ∗ σ2 ∗ e– x2+y2

2∗σ2 (2)

Both Equations (1) and (2) indicate two critical parameters for
constructing a Gaussian smoothing kernel: dimensions (x and y)
and variance (σ2). Properly setting these kernel parameters for
the specific scene significantly affects the performance of Gaus-
sian filtering. Incorrect settings can result in distorted images and



hinder the intended purpose [10]. Inaccurate Gaussian filtering
can lead to issues such as edge position displacement, disappear-
ing edges, or phantom edges. Despite these challenges, Gaussian
filtering remains effective for several reasons [5, 11–13]:

1. Gaussian filtering excels at removing noise that disrupts the
continuity of edge lines, making it preferable for edge de-
tection applications.

2. Gaussian smoothing is widely used in image processing
studies because it uses a 2-D distribution as a ”point-spread”
function, simulating optical blurring in the human visual
system.

3. The rotationally symmetric shape of the Gaussian func-
tion’s kernel matrix helps negate mispositioning issues.

4. Gaussian blur plays a role in averaging pixel weights with
their surroundings, making images suitable for downsam-
pling. It’s commonly used in data compression to reduce
image sizes.

5. Adjusting the smoothing parameters for Gaussian blur is
straightforward, mainly relying on σ, where a higher σ
value results in more blur.

2.1. Digital Processing for Gaussian Smoothing

To translate Gaussian blur from mathematical operations into
hardware circuitry, a comprehensive understanding of it’s imple-
mentation in digital processing techniques is essential. A funda-
mental operation involved in this process is convolution, which
combines two functions to create a modified function that blends
their shapes. Convolution refers to both the result and the pro-
cess itself. Mathematically, it’s an integral operation between two
functions: one called the input signal (F), representing the input
image, and the other known as the mask, filter, or kernel (H). The
result of convolution (G) can be used for tasks like edge enhance-
ment, sharpening, or blurring in image applications. The mathe-
matical equations for convolution are given in both frequency (3)
and time domains (4):

G = F ∗ H (∗ : Convolution Operator) (3)

g(t) =
∫ ∞

–∞
f (t – τ ) ∗ h(τ ) dτ (4)

Here, t represents time, and τ denotes the variable during convo-
lution. Implementing convolution in hardware may seem com-
plex due to the integral involving multiplication, addition, and

Fig. 1. The mathematical explanation of the 2-D image
convolution operation

subtraction. However, it can be simplified as a sum of product
operations, assuming that the pixel signals in the image are dis-
crete time quantities (which they are in a single frame). In this
context, convolution can be defined as shown in Equation (5):

g[x, y] =
k∑

u=–k

k∑
v=–k

h[u, v] ∗ f [x – u, y – v] (5)

Where x and y are horizontal and vertical coordinates, and u and
v represent variables during convolution. Fig. 1 illustrates the
mathematical concept of 2-D image convolution, where (A, B, C,
D, E, F, G, H) represent selected input image pixel signals multi-
plied by a 3 × 3 Gaussian kernel (σ = 1), chosen for this system.
The result (Em) represents the filtered pixel signal. The goal of
digital filtering techniques is to enhance specific image character-
istics, allowing the filtered image to be used in further processing
algorithms. As mentioned earlier, Gaussian smoothing is advan-
tageous for motion edge detection in noisy scenes. It prioritizes
multiple moving pixels in small regions over isolated pixels scat-
tered in the background, making it effective for highlighting mov-
ing object edges. In this work, we employ Gaussian filtering with
a 3 × 3 masking matrix. The matrix coefficients follow the Gaus-
sian function described in Equation (2), with the standard devi-
ation playing a crucial role in edge contrast. A lower standard
deviation emphasizes edges by giving higher coefficients to cen-
ter pixels. Fig. 1 displays the used masking matrix in our circuit,
featuring a standard deviation of 1 (σ = 1). We have chosen to
explain Gaussian filtering using a small masking matrix to avoid
complex circuitry associated with larger scales.

Fig. 2. Connections between center and neighboring pixels to be able to transmit the pixel data to the Gaussian filter



3. System Architecture

To implement Gaussian filtering within the analog circuit struc-
ture, we partition the process between the pixel array and the
Gaussian filtering module.

3.1. CMOS Image Sensor Array

Fig. 2 illustrates a 3 × 3 block from the proposed pixel ar-
ray module. This design differs from conventional CMOS im-
age sensor arrays used in prior scientific studies [14] because its
distinctive role lies in serving a large size of pixel signals to the
Gaussian filter. In standard pixel arrays, a decoder selects a sin-
gle pixel line for reading. However, Gaussian smoothing requires
data from all 9 pixels in a 3 × 3 block. In this design, we have re-
configured the pixel array so that selecting one pixel row activates
both the rows above and below it. This simultaneous activation is
achieved through interconnections between pixel circuits in the
array (see Fig. 3 for the pixel circuit and its symbol). When a
pixel row is selected using the Read Enable RE(j) signal, its cor-
responding subcircuit activates neighboring pixels both above and
below. As a result, all three rows collectively participate in the im-
age read-out process. This configuration draws inspiration from
observed interactions among groups of visual neurons in the in-
ner retinal layers, where a triggered neuron in the center interacts
with neighboring neurons. Although our pixel array’s interaction
mechanism differs from the biological structure, it shares an ac-
tivation relationship between the center and neighboring pixels.
After the read-out process, the generated pixel signals traverse
through the columns of the pixel array. Each column, denoted as
IP(i, j), accommodates three base data lines for the activated pix-
els in that column—left lines for the top row, right lines for the
bottom row, and the center column for the center row. M1, M2,
and M3 transistors serve as switches, controlling the flow of cur-
rent from the pixel sensor input. The activation input received by
the subcircuit determines the path for these data signals. They are
then routed through the respective baselines and proceed through
the Correlated Double Sampling (CDS) and amplifier circuits be-
fore reaching the Gaussian filtering module.

Fig. 3. The added subcircuit to the common pixel structure

3.2. Gaussian Filter Module

This module is responsible for applying Gaussian smoothing
to selected pixels. It represents the analog circuitry that converts
mathematical convolution operations into hardware. The design
of the proposed module includes a row of masking cells, as illus-
trated in Fig. 4. Given that the read-out signals from the pixel
array are transmitted row by row, the size of the Gaussian filter
register aligns with the number of pixels in a row. Each masking
cell is linked to a column from the pixel array and receives input
from three pixels simultaneously. In accordance with Fig. 2, the

baseline of the center pixel row is processed in the masking cell
with a different multiplying coefficient compared to the top and
bottom rows, which is why they are received through separate in-
puts. This 3-input feature in the masking cell also allows the pro-
cessing of the column of three-pixel signals at once. Within the
filtering register, each masking cell generates three outputs: one
primary and two adjacent side outputs. The primary output shares
a node with the two side outputs from neighboring cells on the left
and right. The result of this interconnection node emerges from
the module’s terminal as the output of a filtered pixel. The internal

Fig. 4. (a) A 3 Masking cell block depicted from Gaussian
filter’s register (b) Masking cell’s symbol

circuit of the masking cell is detailed in Fig. 5. Each cell’s circuit
comprises 4 NMOS and 4 PMOS transistors, forming three cur-
rent mirror structures (CM1, CM2, CM3). It has been previously
discussed that the convolution operation in image processing can
be managed as outlined in Equation (5). However, executing the
entire process within a single block is complex. In this design,
we divide the convolution operation into multiplication and ad-
dition components. In the multiplication phase, the input pixel
signals are multiplied by the coefficients assigned to their posi-
tions in the Gaussian kernel matrix, as depicted in Fig. 1. Current
mirrors possess the capability to multiply current signals. Their
circuit structures can be adjusted by altering the width-to-length
ratio (W/L) of the MOSFET channels to align with their intended
masking coefficients. Table 1 provides details on the components
of the designed analog Gaussian filter circuit, including MOSFET
transistor W/L ratios, input current value ranges, and other rele-
vant values.

Fig. 5. Masking cell’s internal circuit

Table 1. Masking cell circuit components and input current
values list

Vdd 1.8V
Vss 0V

W/L

M1, M3, M4 18µm/1.8µm
M2 36µm/1.8µm

M5, M6, M8 140µm/1.8µm
M7 280µm/1.8µm

Input Current Range 270 – 360µA



The masking cell operates as follows: CM1 functions as a cur-
rent amplifier, doubling the input current from the center row.
CM2, on the other hand, maintains a product factor of 1 with
summing the data currents from the top and bottom rows. Both
CM1 and CM2 converge at CM3, which features three outputs,
corresponding to M6, M7, and M8 transistors. These outputs have
product factors of 1 : 2 : 1, respectively. The outputs with a factor
of 1 are shared side outputs with neighboring masking cells, while
the output with a factor of 2 serves as the main output. Regarding
the addition phase of the convolution operation, it is achieved by
connecting MOSFET transistors in parallel. Since the outputs of
CM3 are interconnected with those of their neighbors, every set
of three adjacent cells generates a single filtered pixel data signal.
This output results from the summation of the main output from
the center cell and one side output from each neighboring cell.

4. Analysis Results

In this section, we discuss and analyze the results of our ex-
periment using the proposed design. We applied the design to
two different scenes, each containing dynamic properties from
two consecutive frame images. Initially, we generated theoretical
results for the 3× 3 Gaussian filter using software algorithms and
then compared them with our analysis results. After discussing
this comparison and presenting mathematical calculations, we ex-
amined the differences between our calculations and those from
related works in the literature.

The data transfer in the analog part of our camera circuit is
based on current. We expect our design to handle input current
values ranging from 270µA to 360µA, corresponding to the com-
mon pixel intensity range of 0 to 255. In our experiment, we ex-
tracted moving edges from input frames using the proposed 3× 3
Gaussian filter circuit, resulting in a binary image where pixels are
categorized as moving (logic 1) or stationary (logic 0). The theo-
retical and analysis results for two scenes, one featuring a walking
man and the other a boy playing with a ball, are presented in Fig.
6 and 7, respectively. These figures include the original grayscale
input image, the used spatial kernel for filtering, Theoretical re-
sult, our analysis results and the result image without any filtering.
Evaluating the new image is important to understand the costs and
benefits of using the proposed design. Production time and im-

Fig. 6. Comparing the outcomes for a scene featuring a walking
man

age quality are key factors to consider in demonstrating the value
of an image processing design. Fortunately, time measurement
is irrelevant since the analog image processing design smooths
the received pixel data instantly, which is a standard advantage of
analog processing. Regarding the quality of the image factor, We
assessed image quality by comparing our design’s images with
digitally filtered ones using the Structural Similarity Index Metric
(SSIM) and Peak Signal to Noise Ratio (PSNR) metrics. SSIM is
defined as follows:

SSIM =
(xy + C1)(2σxy + C2)

(σ2
x + σ2

y + C2)((x)2(y)2 + C1)
(6)

Where C1 and C2 are constants, x and y are datasets of theoretical
and analytical results, and x, y, (σ2

x ), (σ2
y ), and σxy are defined as

follows:

x =
1
N

N∑
i=1

xi (7)

y =
1
N

N∑
i=1

yi (8)

σ2
x =

1
N – 1

N∑
i=1

(xi – x)2 (9)

σ2
y =

1
N – 1

N∑
i=1

(yi – y)2 (10)

σxy =
1

N – 1

N∑
i=1

(xi – x)(yi – y) (11)

Mean Square Error (MSE) is a widely used metric for assess-
ing image quality. However, in the case of binary images, MSE
is not well-suited for our design due to certain limitations. MSE
primarily focuses on pixel intensity differences, which may not
align with the characteristics we aim to evaluate in binary images,
where the primary information of interest often pertains to the
spatial arrangement and distribution of ’white’ and ’black’ pix-
els. To address this, we turn to derivative metrics like Peak Signal
to Noise Ratio (PSNR). PSNR measures the ratio between the

Fig. 7. Comparing the outcomes for a scene featuring child
playing with a ball



maximum possible pixel value and the root mean square error,
providing a measure of image fidelity.

PSNR = 10 log
(28 – 1)2
√

MSE
(12)

Where MSE is defined as:

MSE =
1

MN

M∑
i=1

N∑
j=1

(x(i, j) – y(i, j))2 (13)

Here, i and j denote the spatial coordinates of the pixels, M and N
represent the dimensions (width and height) of the image frame,
and x(i, j) and y(i, j) signify the theoretical and analytical results of
the image, respectively. The quality metrics used for comparing
the analysis results with the theoretical results are shown in Table
2. We also collected additional results from other works in the
literature concerning analog image processing techniques.

Table 2. Similarity metrics between theoretical results and
analysis results for 2 different scene

When x(i, j) = y(i, j)
SSIM 1
PSNR ∞

Walking Man
SSIM 0.9865
PSNR 25.74031

Child playing with a ball
SSIM 0.9657
PSNR 22.95278

Average Performance in [2]
SSIM 0.7578
PSNR 24.6398

5. Conclusion

In this paper, we introduced a novel analog image processing
technique inspired by Gaussian filtering. Our circuit design is ver-
satile and can find applications in various scenarios, but our anal-
ysis here focused on its effectiveness in detecting moving edges.
We achieved this technique using simple analog circuits, includ-
ing current mirrors, and made some adjustments to the pixel ar-
ray. We collected results from the analysis of binary images gen-
erated from real scenes and evaluated them using SSIM, PSNR
metrics. Our experiments demonstrated that our straightforward
analog circuit design produced results highly similar to those ob-
tained from digital image processing software. This underscores
the capability of our proposed design to execute Gaussian filter-
ing rapidly, making it suitable for dynamic object detection ap-
plications. Performing early imaging processing before analog-
to-digital conversion can enhance the support for digital imaging
components within camera systems. The continued development
of innovative image processing techniques remains pivotal for
achieving high-performance outcomes in applications involving
artificial intelligence and other high-speed imaging mechanisms.
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