Design and Implementation of a Lightweight Bloom Filter Accelerator for IoT
Applications

Hiiseyin Aydin Seymenl, Miistak Erhan Yalgln2

'Department of Electronics and Communication Engineering, Istanbul Technical University, istanbul, Turkey
seymenh20@itu.edu.tr
2Department of Electronics and Communication Engineering, Istanbul Technical University, istanbul, Turkey
mustak.yalcin @itu.edu.tr

Abstract

The Internet of Things (IoT) has evolved into a rapidly ex-
panding web of devices surrounding our lives. This intercon-
nected ecosystem facilitates a new level of collaboration and
the collection of precious data to be distributed and analyzed.
However, as the number of connected devices grows, the vol-
ume and variety of generated data increase significantly, ne-
cessitating efficient and scalable solutions.

Membership testing is one of the challenging the algorithms
used in most of the network applications. To make it fast
and lightweight, probabilistic data structures like Bloom Fil-
ters are employed. Although variants of this algorithm are
proposed in the literature, there are very few addressing low
power, low resource implementations with recently developed
hashing techniques. Therefore, in this work, we present a
practical Bloom filter accelerator design with Murmur3 hash,
implemented on a Nexys A7 FPGA board. Then, we test and
analyze its performance to identify limitations and explore
possible improvements.

1. Introduction

The Internet of Things has enhanced the way we interact with
the world, forming a sophisticated environment filled with smart
devices. These devices and systems constantly exchange, share,
and gather valuable information to enable real-time monitoring,
automated decision making, and reveal analytics otherwise hid-
den. This is why applications ranging from transportation, man-
ufacturing, agriculture, healthcare, infotainment, smart cities etc.,
are all transforming to benefit from the IoT paradigm.

As with all concepts in the engineering field, IoT has its own
trade-offs and challenges in addition to its many advantages. Pri-
vacy issues, security concerns, growing complexity, high demand
for bandwidth, and many others need to be addressed to unlock
its full potential [1].

A significant number of the mentioned applications require
fast membership testing to accomplish given tasks without with-
out causing data flow bottlenecks. Identification, tracking, secure
communication, attack mitigation, data caching, edge computing
are all deploy techniques to achieve it. With the number of de-
vices in the network growing, however, fulfilling this requirement
will be much more troublesome considering the battery life, pro-
cessing power, and memory limitations of IoT devices. Therefore,
membership testing should be efficient and scalable to be applica-
ble. This forces designers to use probabilistic data structures like
Bloom Filters.

A Bloom Filter is a space-efficient data structure used in appli-

cations where approximate answers are acceptable. In exchange
for false positive queries, it enables fast testing, substantially re-
duced memory usage, and relatively low power consumption com-
pared to exact matching techniques like content addressable mem-
ories (CAM) suffering from very high resource requirement. It
leverages hash functions to randomly distribute signatures of ele-
ments in a set. These compact signatures occupy significantly less
memory space compared to the original data set. After construct-
ing the filter, membership testing can be performed utilizing the
same hash functions. The resulting hash values are used to match
with previously recorded signatures in the memory.

In the event of a “match”, all locations pointed by the hash
results should contain pre-recorded signatures. If any of these lo-
cations is empty, it is considered a “no match”. While “no match”
means exactly not being a member, a “match” can sometimes lead
to a false membership decision. The likelihood of this mistake
can be constrained by adjusting memory size and the number of
independent hash functions utilized [2]. Therefore, it’s crucial to
establish an appropriate tolerance level for an application. Once
this level is determined, fine tuning can be performed on the men-
tioned parameters to meet specific requirements.

In more detail, as the number of elements and therefore re-
sulted signatures recorded increases, the false positive rate (FPR)
increases. Conversely, rise in the number of independent hash
functions decreases this probability. Enlarging the bloom filter
reduces the probability too. Using more resources in the filter
means less failure in general. Thus, it’s essential to strike a bal-
ance between resource usage and the failure rate. This trade-off
can be analyzed, and optimizations can be performed based on
the Equation 1, where p is the false positive probability, k is the
number of hash functions, n is the number of elements in the set,
and m denotes the size of the bloom filter.

k
P (1 _ e—k*n/m) (1

Another important factor, affecting the performance of the fil-
ter is the choice of hash functions. Hash functions are employed
to map elements to calculated positions in the bloom filter. There-
fore, this mapping should be uniform and evenly distribute ele-
ments throughout the filter. Otherwise, signatures for different el-
ements coincide, leading to collisions and an increase in the false
positive probability. Additionally, the function should be fast and
scalable. The one having high performance with low power and
resource requirements should be selected. Considering all these
factors, MURMUR3 hash function is selected due to its superior
properties mentioned in [3]

In the literature, various types of Bloom Filters and hash func-

tions are utilized in the context of IoT. For applications like stock
management and object tracking, identifying unknown tags is an
important problem to overcome. It requires heavy data transmis-
sion, so a bloom filter based RFID identification method is pro-
posed in [4]. Also, to protect the privacy of personal data and
reduce transfer overhead, a bloom filter based face recognition is
proposed for IoT applications in [5]. As it can be seen, reducing
network congestion and transferring less data is a topic having a
lot of attention. For this reason, caching content in IoT devices
is proposed in [6]. Handling content searches in this distributed
database relies on bloom filters. Another example among many is
a driver monitoring system, exploiting bloom filters to diminish
computational complexity [7].

Although the bloom filter is an efficient method, it should be
optimized for IoT applications too. To be suitable for edge de-
vices and servers, lightweight implementations with optimized
hashing functions should be derived. However, most of the re-
cently published work heavily concentrates on manipulation of
false positive probability, application specific improvements or
making use of bloom filters to improve algorithms working on
high performance, high power servers or FPGAs. Therefore, in
this work, we present a counting bloom filter (CBF) accelerator
implementation that requires low power and resources. We used
the MURMURS as the hash function due to the reasons stated
previously. We run the design on a board having relatively low
resources, a Nexys A7 FPGA board, tested it and analyzed its per-
formance. We demonstrated resource allocation and power con-
sumption of the design for two types of memory used as bloom
filter. Then, we focused on comparison and possible improve-
ments that can be applied to achieve better performance without
compromising the design goals we presented much.

2. Accelerator Design

The design includes a Microblaze processor, an accelerator IP,
an Ethernet MAC, a DDR controller, a QSPI interface, a UART
interface, on-chip memories, AXI interconnect and other discrete,
serial interfaces commonly required in IoT systems. The Microb-
laze serves as a general purpose IoT processor, running specific
tasks. To efficiently carry out the intended IoT application and
maintain high throughput network functions simultaneously, it
must be paired with a lightweight accelerator IP. Otherwise, net-
work functions could consume a significant portion of the pro-
cessing power, potentially hindering the proper functioning of the
IoT application. A bloom filter accelerator is a perfect example,
addressing this problem, and this is the main reason why it is in-
troduced. In this section, a brief description of peripherals and
details of the proposed accelerator are provided.

The Ethernet MAC is responsible for the overall communica-
tion of the system. Both the IoT application and the network func-
tion rely on data flowing through Ethernet. The DDR memory and
the controller serves as a high volume bloom filter as described in
subsection 2.1. On-chip memories are utilized for different pur-
poses. One of them is Microblaze instruction and data memory.
Another two are utilized to temporarily store data to be processed
(dual BRAM). The rest serve as a low volume, high speed bloom
filter for the version described in subsection 2.2. The UART is the
control and test interface of the system. AXI interconnect inter-
faces all these units providing a low latency, high speed medium.
Also, the QSPI interface is employed to hold the system configu-
ration.

The network function requiring fast membership testing is han-
dled by the accelerator. It has command (AXI Slave Lite), bloom
filter(AXI Master), data request(AXI Master), and interrupt inter-
faces. It includes logic blocks, arithmetic units and three FIFOs to
provide data read/write, hashing and address calculation (Figure 1
and Figure 2).

The Control Logic unit is the manager of the IP. It communi-
cates with the processor, gathers necessary parameters and com-
mands. Start command, bloom filter update command, MUR-
MUR3 parameters, number of hash functions, read/write addresses
are all registered, and necessary internal signals are generated by
this unit. It also provides status and an interrupt when the check
or update process is completed. When a start command is issued
by the processor, the control logic initiates data read logic to fetch
data to be processed. The data read logic sends this data to the
MURMUR3 accelerator.

The MURMURS3 accelerator consists of 20 Xilinx DSP blocks
running at 100 MHz, and produces hash results on every clock cy-
cle with a 5-cycle internal delay. This block combines XOR, mul-
tiplication, addition and logic shift operations to produce these
results. Although, there are faster algorithms for multiplication,
their logic implementation cannot beat Xilinx optimized DSP re-
sources, which is the main reason for this selection. Also, by
optimizing critical paths, this IP can run up to 250 MHz with an
18-cycle internal delay. These IPs can be paralleled without any
performance degradation, therefore 12 of them can generate up to
3 GHash/sec for Xilinx Artix 100T which is substantially more
than needed for the design.

The MURMUR3 unit stores generated hash values in the Hash
Out FIFO. FIFOs in the design are used to pipeline units and han-
dle disturbances in the data flow. When the FIFO starts filling,
the Address Calculator logic reads data from it and calculates the
bloom filter address to be used in the Bloom Read Logic. The
signature is read from either on-chip memory(BRAM) or DDR2
and stored in the Bloom Read FIFO. Simultaneously, the data and
the corresponding address is kept in the Bloom Update FIFO for
the Bloom Update logic to update the filter, if the bloom update
command was issued previously. Afterwards, the Result Write
logic fetches the results and sends them back to the address des-
ignated by the Control logic and the interrupt is issued to notify
the processor.

2.1. DDR based design

In the DDR based design (Figure 1), external DDR2 memory
is utilized as the bloom filter. It enables significantly larger bloom
filters, which enables the filter to scale. Also, by adding more
memory(as much as FPGA supports) to the Printed Circuit Board
(PCB) design, the bloom filter size can be further increased. How-
ever, random access performance of this design is significantly
lower than the design with on-chip memory(OCM). Delays from
the memory controller(Mig), AXI interconnect, and DDR2 are
aggregated, making random data read so slow. The DDR memory
is the main bottleneck, which limits many applications as stated

in ([8]).
2.2. On-Chip Memory Based Design

In the on-chip memory based design (Figure 2), instead of
DDR memory, internal Xilinx BRAM resources are utilized. Also,
to get rid of AXI interconnect overhead, the BRAM memory is

DDR MEMORY
(BLOOM FILTER)

FPGA

BRAM
MEMORY

MiG

L

ETHERNET AXI Interconnect MICROBLAZE
MAC
T T |INTERRUPT
AXI Master AXI Master AXI Slave Lite

U 1

BLOOM BLOOM READ RESULT DATA READ
UPDATE LOGIC LOGIC WRITE LOGIC LoGIC

BLOOM

oD MURMURS
FIFO
Discrete control and
ADDRESS register interface
HASH
CALI?(;JGILACTOR ["OUTFIFO
DATA HANDLER CONTROLLER

ACCELERATOR IP

Fig. 1. Block scheme for the DDR based Bloom Filter
Accelerator Design

connected to the IP directly. It enables higher bloom filter check-
ing and updating performance which is crucial for network appli-
cations in general. Yet, it has limited scalability due to limited
FPGA resources. The only option for scaling is having a chip
with more internal RAM.

FPGA

ETHERNET
MAC

BRAM MEMORY

(BLOOM FILTER) AXI Inter

MICROBLAZE

AXI Master AXI Master AXI Slave Lite

v ' v '

BLOOM BLOOM READ RESULT DATA READ
UPDATE LOGIC LOGIC WRITE LOGIC LOGIC

BLOOM BLOOM
UPDATE READ
FIFO FIFO

MURMURS!

[Discrete control and
ADDRESS register interface
CALCULATOR DS'??IFI‘:O
LoGIC

DATA HANDLER

CONTROLLER

ACCELERATOR IP

Fig. 2. Block scheme for the On-Chip Memory based Bloom
Filter Accelerator Design

3. Results and Discussions

The tests are conducted by filling the data storage dual BRAM
(mentioned in section 2) with random 32-bit words. Concurrently,
the processor adjusts parameters of the accelerator and sends the
start command. Then, the time between the start command and
the interrupt is measured by the Microblaze processor. The mea-
surements are collected through UART. Also, using Vivado ILA,
exact timings of the IP are measured to ensure and asses its per-
formance. The reason why the Ethernet interface is not utilized
as a data source in the tests is speed. The Nexys A7 board has a
100Mb/s Ethernet interface, which is way below what is intended
to be tested. In the OCM based design, for 1 hash function, more
than 46 MChecks/s is achieved. To provide random 32-bit keys to
this system, almost 1.481 Gbps data should be transferred, which
is not possible.

The test data is provided in chunks of 16, 32, 64, 128, or 256
keys. It is conducted to reduce effects of overheads in the IP. Hav-
ing bigger bursts of data makes the IP work more efficiently. This
way, the true performance of the IP is achieved which starts satu-
rating with chunks having 256 keys (Figure 3, Figure 4). There-
fore, evaluations are conducted with this configuration.

® =1 @ k=2 k=3 @ k=4

2.0
7 1.82
2
=]
@
§ 15
£
£
%3
2
S 10 092
£ —— .
2
==]
e
: 0.5 0:46
@
=
E
=
= oo

50 100 150 200 250
Data Size

Fig. 3. Effect of Data Size on Performance for DDR Based
Design

® =1 @ k=2 k=3 @ k=4 @ k=5

50
46.29

40
30

23.21
20

11.62
0 % 53

50 100 150 200 250

Number of Bloom Checks (Mcheck's)

Data Size

Fig. 4. Effect of Data Size on Performance for On-Chip Memory
Based Design

Due to the pipelined design of the units, time spent in MUR-
MURS3 calculation (#n3), BRAM (#p4m_rnw) and FIFO (255,)
read/writes contribute to the overall time spent once. The total
duration (#4/p0mcheck) 1S mainly determined by the data chunk size
(data_size), bloom filter memory random access delay (5/00m_read)

and the number of the hash functions (k).

Equation 2 is an analytic approach to the performance evalu-
ation. Once testing is completed, the results forming the Table 1
are compared with the metrics obtained from Equation 2. The
comparison validates the formula as a good representation of the
performance.

thioomcheck = k * (Cpram_riw + Yifo_riw + tmm3 + data_size * tpjoom_read)
@3
In the DDR based design, having bigger data chunks does not
affect the performance (Figure 3) as it does in the OCM based
design (Figure 4). Due to the large random access time of the
DDR memory, bloom filter read duration dominates the result of
the Equation 2, even with very small data sizes. In contrast, when
BRAM is used as the bloom filter, random access time is com-
parable with other delays. Therefore, to achieve optimal perfor-
mance, data size is increased up to the point where other delays
become negligible. This is another detailed reasoning behind us-
ing a data chunk size of 256 keys.

Table 1. Performance comparison between DDR based and
On-Chip Memory based designs

Table 2. Resource allocation values for DDR based and On-Chip
Memory based designs

Number of hash | Performance | Performance | Acceleration
functions (DDR based) |(BRAM based) Factor
(MCheck/s) (MCheck/s)
k=1 1.82 46.29 x25.43
k=2 0.92 23.21 x25.23
k=3 0.61 15.49 x25.39
k=4 0.46 11.62 x25.26

The results shown in Table 1 suggest that the accelerator can
perform 1.82 MChecks/s in the DDR based configuration for the
number of hash functions, k, equals to 1. Also, the performance
is 46.29 MChecks/s in the OCM based configuration which is 25
times better than the DDR based design. Moreover, an increase
in the number of hash functions does not affect the acceleration
factor while decreasing overall performance. This is mainly be-
cause more hash functions correspond to linearly increased num-
ber of random memory accesses. These accesses are the dominat-
ing factor in the bloom filter checking operation. Therefore, the
acceleration factor between designs remains fairly constant while
performance drops linearly for both of them.

There are several ways to improve the design, without chang-
ing fundamentals of the bloom filter algorithm. Having a 32-bit
DDR4-3200MHz instead of 16-bit DDR2 may increase perfor-
mance up to 12.74 MChecks/s (for k=1, Equation 2) theoretically,
for DDR based design. Also, other parts of the design could be
improved to further boost the check rate. AXI interfaces can be
sped up by increasing the transfer clock rate to at least 200 MHz.
Also, increasing bus width from 32bit to 128-bit will result in
another 4x acceleration in data transfer between blocks. Addi-
tionally, The MURMUR3 IP is currently running at 100MHz and
it could be run at 250 MHz as it is described in section 2. Con-
sidering all the improvements stated, the DDR based design can
perform 17.62 MChecks/s (for k=1, Equation 2) theoretically .
Also, with the mentioned improvements, the OCM Based design
can perform up to 177.47 MChecks/s (for k=1, Equation 2), which
makes it quite preferable.

In the Table 2, a resource allocation comparison is given. The
table shows an insignificant increase in resource allocation for the
OCM design. At the expanse of requiring slightly more LUTs,

Resource Type | Utilization | Utilization (BRAM | Available
(DDR Based) Based) Resource
Slice LUTS 1573 72.48% 2641/4.17% 63400
Slice Registers | 1428 /1.13% 1835/ 1.45% 126800
BRAM 8/5.93% 8 + BF Size / - 135
DSPs 20/8.33% 20/8.33% 240

registers and BRAM resources, the design can perform 25 times
more checks for small bloom filter sizes. For bigger filters, the
DDR based design or bigger FPGA should be preferred.

Also, the first two rows of the Table 3 show that the power
consumption of the OCM based design is lower due to interface
generator IP and external DDR2 memory in the DDR based de-
sign. However, for bigger bloom filters, more BRAM resources
will be used, which will make overall power consumption closer.
Also, it is worth mentioning these values are just for the IP, AXI
Interface, utilized memories and controllers, not for the whole IoT
System. To make it comparable with the work in [8], consumption
of the overall systems are given too (including debug cores).

Bloom filters are utilized in various applications in different
forms and types. Therefore, comparing existing works with re-
sults presented in incompatible forms, and sometimes, not pre-
sented at all, is not straightforward. Although, there is no re-
cent work focusing on resource allocation of bloom filters de-
signed specifically for IoT applications, we compare our work
with [8], [9], [10] in Table 3 to evaluate performance achieved.

In [8], the random memory access bottleneck we have in our
accelerator IP is targeted. They designed a bloom filter with mem-
ory access accelerator. By temporarily storing DDR accesses as
their target bank, they manage to read data in bursts which boosts
the performance significantly. However, resource utilization and
power consumption values are too high in this technique, 175x
LUT, 124x BRAM, and more than 8.3x power compared to our
DDR based design. It almost fits a bigger, power hungry FPGA,
Virtex-7 consuming 25 Watts. Another work having high per-
formance is [9]. With the help of newest generation FPGA, one
memory access bloom filter (Bloom-1) and newly generated hash
function (Xoodoo-NC), they achieved very high speed operation.
On the other hand, with a hash function comparable to the Mur-
mur3 (FNV-1a function), they achieved similar resource alloca-
tion and 2x performance compared to our design having similar
FPR. However, the improved design, we proposed earlier, poten-
tially manages to double the performance of FNV-1a version even
though it involves 4 times more memory accesses. Additionally,
they proposed a CAM based exact matching algorithm which out-
performs our design compromising resource allocation and possi-
bly power (not provided) which are valuable in IoT applications.

In study [10], they claimed an ad hoc algorithm enabling burst
access to DDR memory as it is in [8]. This way they achieved a
performance level that falls between the DDR based and BRAM
based designs we proposed. To accomplish this burst access char-
acteristic, [8] utilizes lots of resources resulting in a large, power
consuming design. However, this is not the case for [10]. Also,
they did not provide power consumption value. Therefore, a com-
plete, detailed comparison is not conducted.

Table 3. Comparison with the Studies in the Literature

Work Technique| Hash FPGA |Memory | Power | FPR f Performance | LUT/| FF |BRAM| DSP
Function | (Xilinx) W) (MHz) | (MChecks/s) | Slices
BRAM Based CBF |Murmur3| Artix-7 |On-Chip|0.341/| 1E7 100 46.29/k 2641 | 1835 8+ 20
Design 100T RAM | 2.96 (11.58, k=4) CBF
(IP/System)
DDR Based CBF |Murmur3| Artix-7 | DDR2 [1.212/]1.3E13| 100 |1.82/k (0.92,| 1573 | 1428 8 20
Design 100T 2.81 k=2)
(IP/System)
Improved CBF |Murmur3| Artix-7 |On-Chip - 1E7 200 177.47/k | >2641|>1835| 8+ 20
Design 100T RAM (44.72, k=4) CBF
(BRAM Based)
[8] BF Multiple | Virtex-7 | DDR3 | 25W | Not 250 372/k (93, [275739| Not 990 | Not
Functions Given k=4) Given Given
[9] Bloom-1 | Xoodoo- | Virtex |On-Chip| Not [2.61E7|462.32| 154.1,k=12 | 675 158 7.5 0
NC UP+ RAM | Given
[9] Bloom-1 | FNV-1a | Virtex |On-Chip| Not |[2.61E7|104.87| 26.22,k=12 | 2706 | 1562 |7.5+6]| 180
UP+ RAM | Given
[9] Custom - Virtex |On-Chip| Not 0 225.07 75.02 20797 | 988 384 0
CAM UP+ RAM | Given
[10] BF Jenkins | Virtex-5| SRAM | Not | 4.5E5| 150 3.33,k=4 |1020/| 1210 | Not | Not
Hash Given 450 Given |Given

4. Conclusions

It can be concluded that the trade off between performance,
resources and power should be evaluated with the requirements of
applications in mind. Especially for IoT applications, this balance
should be adjusted well to achieve optimal performance.

In this paper, we introduced a bloom filter accelerator IP ad-
dressing the pressing need for efficient membership testing in the
context of IoT. We presented it in two configurations: DDR based
and on-chip memory based designs. These configurations aim to
enhance the scalability and performance of the design, respec-
tively, while targeting low resources and power installations. We
provided test results and analytical analysis of the design’s behav-
ior. We compared our work with the studies in the literature and
discussed alternative methods to further improve it. Our future
plans involve implementing these improvements to assess their
real-world impact on performance.

5. References

[1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao,
“A survey on internet of things: Architecture, enabling tech-
nologies, security and privacy, and applications,” /IEEE In-
ternet of Things Journal, vol. 4, no. 5, pp. 1125-1142, 2017.
S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “The-
ory and practice of bloom filters for distributed systems,”
IEEE Communications Surveys & Tutorials, vol. 14, no. 1,
pp. 131-155, 2012.

F. Yamaguchi and H. Nishi, “Hardware-based hash func-
tions for network applications,” in 2013 19th IEEE Inter-
national Conference on Networks (ICON), 2013, pp. 1-6.
D. Zhang, Z. He, Y. Qian, J. Wan, D. Li, and S. Zhao,
“Revisiting unknown rfid tag identification in large-scale in-
ternet of things,” IEEE Wireless Communications, vol. 23,
no. 5, pp. 24-29, 2016.

[5] W. Xue, W. Hu, P. Gauranvaram, A. Seneviratne, and S. Jha,

(2]

(3]

(4]

“An efficient privacy-preserving iot system for face recogni-
tion,” in 2020 Workshop on Emerging Technologies for Se-
curity in loT (ETSecloT), 2020, pp. 7-11.

G. Dhawan, A. P. Mazumdar, and Y. K. Meena, “Cncp: A
candidate node selection for cache placement in icn-iot,” in
2022 IEEE 6th Conference on Information and Communi-
cation Technology (CICT), 2022, pp. 1-6.

[7]1 Q. Kong, R. Lu, F. Yin, and S. Cui, “Blockchain-based
privacy-preserving driver monitoring for maas in the ve-
hicular iot,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 4, pp. 3788-3799, 2021.

S. Kang, T. S. Ganesh Nerella, S. Uppoor, and S.-W. Jun,
“Bunchbloomer: Cost-effective bloom filter accelerator for
genomics applications,” in 2022 32nd International Confer-
ence on Field-Programmable Logic and Applications (FPL),
2022, pp. 9-16.

A. Sateesan, J. Vliegen, J. Daemen, and N. Mentens, “Novel
bloom filter algorithms and architectures for ultra-high-
speed network security applications,” in 2020 23rd Euromi-
cro Conference on Digital System Design (DSD), 2020, pp.
262-269.

P. Lambruschini, M. Raggio, R. Bajpai, and A. Sharma, “Ef-
ficient implementation of packet pre-filtering for scalable
analysis of ip traffic on high-speed lines,” in SoftCOM 2012,
20th International Conference on Software, Telecommuni-
cations and Computer Networks, 2012, pp. 1-5.

(6]

(8]

(9]

[10]

	Introduction
	Accelerator Design
	DDR based design
	On-Chip Memory Based Design

	Results and Discussions
	Conclusions
	References

