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Abstract 
 

Epilepsy, a neurological condition colloquially known as a 

seizure disorder, causes involuntary muscle contractions and 

cognitive changes through sudden, uncontrolled neuronal 

discharges in the brain. The recurrent, unpredictable nature 

of these seizures poses the threat of potentially fatal or 

irreversible brain damage, underscoring the critical 

importance of early detection of epilepsy seizures. This study 

extracts informative features from medical records to 

improve early epilepsy seizure diagnosis. Employing bio-

inspired optimization algorithms, it performs feature 

selection and constructs two different machine learning 

models, both equipped with optimization algorithms for 

epilepsy seizure diagnosis. Evaluation encompasses 

comprehensive metrics including accuracy, precision, F1 

score and computational cost, with convergence graphs 

highlighting the impact of the optimization algorithms. 

Encouragingly, the results show that the model, using just five 

selected features, achieves an impressive 95.28% accuracy in 

diagnosing epileptic seizures. This highlights the suitability of 

the proposed model for real-time applications, characterized 

by its streamlined parameter complexity. 

 

1. Introduction 
 

Epilepsy is a neurological brain disorder associated with 

prolonged seizures resulting from sudden impairment of the 

central nervous system [1]. Epilepsy, one of the most prevalent 

brain disorders today, affects approximately 70 million 

individuals globally [2]. With epilepsy estimated to affect 

approximately 1% of the world's population, recurrent epileptic 

seizures pose a risk to people worldwide [3-4]. In some cases, 

seizures can cause permanent brain damage and in others they can 

be fatal. Early diagnosis of recurrent seizures is therefore vital to 

identify and treat people with this life-threatening condition. 

Epileptic seizures, which are abrupt and transient, can be 

quantified from synchronized electrical activity in the brain. 

Numerous methods have been proposed in the literature to 

measure epileptic signals, including electroencephalography 

(EEG), positron emission tomography (PET), single photon 

emission computed tomography (SPECT), magnetic resonance 

imaging (MRI) and functional magnetic resonance imaging 

(fMRI) [5]. However, data from PET, SPECT, MRI and fMRI are 

limited due to their lengthy and costly nature. In contrast, EEG, a 

technique in which electrodes are placed on the skull to measure 

brain signals, provides a cost-effective and easily accessible 

means of data collection and is widely used in the diagnosis of 

epilepsy [6]. Patient examinations are generally conducted by 

neurology specialists to establish an epilepsy diagnosis. However, 

diagnosing epilepsy based on EEG signal analysis is a time-

consuming and labor-intensive process for neurologists [7]. 

Therefore, the use of automated systems to assist neurologists in 

the early diagnosis of epilepsy is of paramount importance. 

Automated analysis of EEG signals for epileptic seizure detection 

involves feature extraction from EEG signals using classical 

signal processing techniques, followed by classification of these 

features using machine learning algorithms [8-10]. With the rapid 

development of deep learning algorithms, convolution-based end-

to-end learning approaches have also proven successful in 

automatic analysis of EEG signals for early diagnosis of epilepsy 

[11, 12]. 

This study presents models for the early diagnosis of epileptic 

seizures from EEG signals using machine learning and bio-

inspired optimization algorithms. The performance of these 

models has been evaluated through metrics such as accuracy 

(Acc), precision (Prec), F1-score, and computational cost (C-

Cost), and their reliability has been tested using a 10-fold cross-

validation method. The rest of the study is organized as follows: 

Section 2 introduces the techniques used in the proposed model 

structure for the diagnosis of epileptic seizures. Section 3 presents 

and discusses the experimental results obtained for the proposed 

model. The conclusions of the study are highlighted in Section 4. 

 

2. Materials and Methods 
 

 This section presents the materials and methods used in the 

proposed model structure for the diagnosis of epileptic seizures. 

The framework of the proposed model is shown in Fig. 1. It is 

clear from Fig. 1 that the model structure includes the following 

stages: data set preparation, entropy-based feature extraction, 

optimization-based feature selection, model training and model 

evaluation. In this study, a model is proposed that uses bio-

inspired human learning optimization (HLO) algorithm to select 

the features that can provide the highest model performance 

among the extracted features, with the aim of achieving the best 

model performance at the lowest C-Cost. The aim is to 

demonstrate that a model with the highest accuracy using the 

fewest number of features can be effectively used in real-time 

applications. 

 

2.1. Epileptic Seizure Recognition Dataset 
 

In this study, an open-access dataset from the Epileptic Seizure 

Recognition database [13] was used. This dataset, consisting of 

EEG signals, was obtained from 500 subjects. EEG recordings of 

23,6 seconds duration were collected from each subject. The time 

series obtained from the recordings were sampled into 4097 data 

points. To enable segmentation of data points into 1-second 

segments, the data points were divided into 23 parts. 



Consequently, the dataset consists of a total of 11.500 data points, 

each containing 178 data points representing 1 second (23 

segments × 500 subjects). The data were collected using 5 

different labels (1, 2, 3, 4, 5). 

Looking at the labels, label 1 represents seizure activity. Label 

2 corresponds to EEG recordings from the tumor region. Label 3 

represents data from a healthy brain region. Label 4 indicates 

measurements taken with the subject's eyes closed, while label 5 

represents recordings made with the subject's eyes open. As can 

be seen from the dataset, except for the data represented by label 

1, the others refer to healthy individuals in the context of epilepsy. 

Therefore, to enable a binary classification of epilepsy in this 

study, the data represented by labels 2, 3, 4, and 5 were combined 

into a single label. 

 

Fig. 1. Framework of the proposed model. 

 

Upon further examination of the dataset, it's noted that each 

label contains 2300 data points. Therefore, while the dataset 

includes 2300 epileptic seizure signals, it also contains 9200 

signals from healthy individuals. This data distribution can 

potentially lead to overfitting and biased results in the machine 

learning model to be trained. Hence, in the experimental study, 

2300 normal and 2300 epileptic seizure data points were used, 

with each label (2, 3, 4, and 5) contributing 575 data points. The 

study was conducted with a total of 4600 data points. The EEG 

signals containing epileptic seizures and healthy EEG signals 

from the dataset are illustrated in Fig. 2. 

 

Fig. 2. EEG signals with healthy and epileptic seizure. 

 

2.2. Entropy-based Feature Extraction 
 

Feature extraction refers to the process of transforming raw 

data into a set of observable features that can be analyzed 

independently of the original data [8]. In the literature, there are 

many options for feature extraction, such as statistical, frequency-

domain, and entropy-based feature extraction methods [14]. In 

this study, considering the chaos within the brain signals obtained 

through EEG, feature extraction based on entropy has been 

preferred. To effectively deal with the nonlinear dynamics in EEG 

signals for the diagnosis of epileptic seizures, 18 entropy-based 

features, as shown in Fig. 3, have been extracted and used in the 

proposed model structure. 
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Fig. 3. Entropy-based features extracted from EEG signals. 

 

2.3. Feature Selection with Optimization Algorithms 
 

Feature selection using optimization algorithms is a technique 

used to effectively improve the performance of a machine 

learning model while minimizing its complexity. This approach 

aims to simplify the model by eliminating features that do not 

contribute to improving its performance. This process addresses 

critical issues for real-time model deployment, such as parameter 

uncertainty, model complexity, and C-Cost. The choice of 

optimization algorithm for feature selection can significantly 

affect the efficiency of this process. Therefore, in this study, the 

HLO algorithm was used for feature selection, as it can adapt to 

the changing characteristics of the optimization problem during 

the feature selection process. 

A notable advantage of the HLO algorithm is its low 

computational complexity, which makes it particularly useful for 

overcoming problems associated with real-time model use. In 

addition, HLO is less sensitive to initial conditions and parameter 

settings than many other optimization algorithms. It achieves this 

by actively avoiding local optima and thus striving to capture 

global optima in fewer iterations. As a result, this approach 

facilitates faster selection of the minimum number of features 

required for optimal model performance [15]. 

The HLO algorithm is a bio-inspired optimization technique 

that mimics the learning and problem-solving behaviour of 

humans. Its core principle is to adaptively search for optimal 

solutions within a complex problem space. HLO uses a simple 

mimicry of mechanisms found in human learning processes to 

facilitate easy implementation. It attempts to find optima using 

individual learning, social learning, random exploration learning, 

and re-learning operators. Individual learning refers to self-

directed learning, while social learning is defined as learning with 

the help of others. Random exploration learning explains learning 

by randomly developing new methods due to a lack of knowledge 

during the learning process. In cases where relearning with new 

methods becomes necessary, this is defined as relearning, which 



prevents the algorithm from getting stuck [16]. Here's a step-by-

step explanation of how the HLO algorithm works: 

i. Initialization: The algorithm begins by initializing a 

population of potential solutions. These solutions represent 

different points in the problem space. The HLO employs a binary 

coding technique for problem solving. Therefore, each solution in 

the population is represented in a binary array format, initialized 

as '0' or '1', depending on whether the information related to the 

problem is present or not, as represented by 

𝑋 =  [

𝑥11 ⋯ 𝑥1𝑀

⋮ 𝑥𝑖𝑗 ⋮
𝑥1𝑁 ⋯ 𝑥𝑁𝑀

]   (1) 

with the condition that 𝑥𝑖𝑗 ∈  {0,1}, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑀, where 𝑥𝑖𝑗 

represents the 𝑖th individual, 𝑁 denotes the number of individuals 

in the population, and 𝑀  indicates the number of components 

contained in each information, the initialization population of the 

algorithm is obtained randomly using the matrix generated in (1). 

ii. Evaluation: Each solution in the population is 

evaluated against a predefined objective or fitness function. This 

function quantifies how good each solution is at solving the given 

problem. The goal is usually to maximize or minimize this 

objective function (𝑂𝐹). 

iii. Learning and Exploration: Inspired by human 

learning, the HLO algorithm uses a combination of learning and 

exploration strategies. It maintains a balance between using the 

best solutions found so far (learning) and exploring new regions 

of the problem space (exploration). 

• Individual Learning Operator: The individual learning 

operator is an operator that enables each individual in the 

population to solve problems based on their own experience. In 

this context, experience refers to the information stored in each 

individual's individual knowledge database (𝐼𝐾𝐷). The 𝐼𝐾𝐷  is 

defined as 

𝐼𝐾𝐷𝑖 =  [

𝑖𝑘𝑖11 ⋯ 𝑖𝑘𝑖1𝑀

⋮ 𝑖𝑘𝑖𝑝𝑗 ⋮

𝑖𝑘𝑖𝐺1 ⋯ 𝑖𝑘𝑖𝐺𝑀

] (2) 

with the condition that  1 ≤ 𝑖 ≤ 𝑁,  1 ≤ 𝑝 ≤ 𝐺,  1 ≤ 𝑗 ≤ 𝑀 . Here, 

𝐼𝐾𝐷𝑖 represents the individual knowledge dataset of individual 𝑖, 

𝐺  specifies the dimension of individual knowledge, and 𝑖𝑘𝑖𝑝𝑗 

denotes the 𝑝th best solution of individual 𝑖. Also, 𝑝 is a random 

integer that selects which individual from the 𝐼𝐾𝐷  is used in 

individual learning. 

• Social Learning Operator: In order for the HLO 

algorithm to have effective search capabilities, the social learning 

operator, when generating a new solution, involves each 

individual in a probabilistic examination of the information stored 

in the social knowledge database (𝑆𝐾𝐷 ), which is structured 

similarly to the 𝐼𝐾𝐷, and copies the bits corresponding to the best 

solution. The 𝑆𝐾𝐷 is described as 

𝑆𝐾𝐷 =  [

𝑠𝑘11 ⋯ 𝑠𝑘1𝑀

⋮ 𝑠𝑘𝑞𝑗 ⋮

𝑠𝑘ℎ1 ⋯ 𝑠𝑘ℎ𝑀

] (3) 

with the condition that  1 ≤ 𝑞 ≤ ℎ, 1 ≤ 𝑗 ≤ 𝑀. Here, ℎ represents 

the size of the 𝑆𝐾𝐷. The newly generated candidate 𝑥𝑖𝑗 randomly 

selects one of the best solutions stored in the 𝑆𝐾𝐷 and copies the 

corresponding bit. 

• Random Exploration Learning Operator: In the process 

of human learning, individuals may not always be able to 

reproduce their individual knowledge and social knowledge due 

to various factors such as forgetting or they may attempt to try 

new strategies to improve their performance. As a result, a 

random learning situation arises. In the HLO algorithm, this 

situation is denoted as 

𝑥𝑖𝑗 = 𝑅𝐸(0,1) =  {
0, 𝑟𝑎𝑛𝑑 ≤ 0.5
1, 𝑒𝑙𝑠𝑒             

  (4) 

where 𝑟𝑎𝑛𝑑  represents the generation of a random number 

between 0 and 1. 

• Re-learning Operator: In HLO, an individual is 

considered to have encountered a bottleneck if its fitness does not 

improve over a certain number of generations. In such a scenario, 

the re-learning operator is triggered. This operator clears the 

individual's 𝐼𝐾𝐷, allowing it to gain new experience and relearn 

in subsequent generations. This process can help the HLO to 

escape local optima and achieve improved performance, similar 

to individuals adopting a new approach when faced with a 

bottleneck in their own learning experience. 

iv. Implementation of HLO: The HLO algorithm achieves 

the discovery of a new solution by dynamically balancing 

individual learning, social learning, and random exploration 

learning to a certain degree, mathematically denoted by 

𝑥𝑖𝑗 = { 

𝑅𝐸(0,1), 0 ≤ 𝑟𝑎𝑛𝑑 < 𝑝𝑟
𝑖𝑘𝑖𝑝𝑗 ,       𝑝𝑟 ≤ 𝑟𝑎𝑛𝑑 < 𝑝𝑖

𝑠𝑘𝑞𝑗 ,                               𝑒𝑙𝑠𝑒
      (5) 

where 𝑝𝑟  represents the probability of random exploration 

learning, the individual learning rate is expressed as (𝑝𝑖 − 𝑝𝑟), and 

the social learning rate is expressed as ( 1 − 𝑝𝑖 ). When an 

individual's learning process reaches a bottleneck, the re-learning 

operator comes into play. It facilitates the individual's re-learning 

by updating his 𝐼𝐾𝐷  value independently of his past state. 

Furthermore, the 𝐼𝐾𝐷 values are updated if they provide a better 

solution than the worst solution in the 𝐼𝐾𝐷 , based on fitness 

values. The same processes are applied to the 𝑆𝐾𝐷 values. All 

these operations continue iteratively until the stopping criteria of 

the optimization algorithm are satisfied. 

In this study, the effectiveness of the HLO algorithm was 

evaluated by comparing the results obtained with the genetic 

algorithm (GA) [17]. Both the HLO and the GA algorithms aim 

to select the minimum number of features from the 18 features 

extracted using a recursive approach with the k-nearest neighbor 

technique that provides the highest performance and fastest 

response time, as measured by the 𝑂𝐹 below: 

𝑂𝐹 =  𝛼 × 𝑒𝑟 + 𝛽 × (
𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑢𝑏𝑠𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟
)       (6) 

Here, 𝑒𝑟  represents the classification error, where 𝑎 𝜖 [0,1] and 

𝛽 = 1 − 𝛼  denote the importance of classification quality and 

subset size, respectively. In this study, to achieve the highest 

performance with minimum feature selection, the values of 𝑎 and 

𝛽 were set to 0.99 and 0.01, respectively. These defined values 

for alpha and beta effectively suppress a high classification error 

rate, allowing a minimum number of features to be selected. 

 

2.4. Building the Classification Model 
 

Classification models are machine learning based approaches 

that are used to categorize labelled data in a dataset based on the 

features extracted from it. In the literature, several successful 

classification models have been used for this purpose, including 

k-nearest neighbors, random forests and support vector machines 

[18]. However, fully connected layers at the end of convolutional 

layers have also demonstrated superior performance in 

classification problems. Therefore, in this study, a model 



consisting of 100 neurons in a fully connected layer and a 

classification layer was used to diagnose epileptic seizures with 

the features selected by HLO. The Softmax activation function 

was preferred for the classification process in the classification 

layer. 

 

3. Empirical Results and Discussions 
 

In this section, we present experimental studies that 

demonstrate the effectiveness of the proposed model for 

diagnosing epileptic seizures. The proposed model includes the 

steps outlined in Fig. 1. In the pre-processing step, min-max 

normalization was applied to the data, as the signals obtained 

from the dataset had been cleaned of noise. The entropy-based 

features shown in Fig. 3 were extracted from the scaled signals. 

To keep the complexity of the proposed model low and improve 

the classification performance, the features were selected using 

the HLO algorithm. The selected features were trained with a 

classifier composed of fully connected layers. During the model 

training, the 'learning rate', 'batch size' and 'epoch' values were set 

to 10−2, 256 and 100, respectively. The dataset was randomly 

and independently divided into two groups, training (70%) and 

testing (30%), using the hold-out method. Both models created in 

the study were validated using a 10-fold cross-validation 

approach. 

All epileptic seizure diagnosis experiments were performed on 

a personal computer equipped with an Intel Core i7-12700H 

CPU, a 6 GB NVIDIA GeForce RTX 3060 graphics card and 16 

GB RAM. All code was compiled using MATLAB 2022b. When 

Fig. 4 is analyzed, it can be seen that the value of the 𝑂𝐹 in feature 

selection with GA is measured as 0.0540 at the 100th iteration, 

while the value of the 𝑂𝐹  in feature selection with HLO 

algorithm is calculated as 0.0394. This observation indicates a 

remarkable improvement of 27.03% in the feature selection and 

in the classification performance of the model achieved by the 

HLO algorithm compared to the GA. It's also worth noting that 

the HLO algorithm reached the best solution in the 41st iteration 

and converged to the optimal solution faster than the GA. In 

contrast, GA did not converge to the optimal solution even after 

99 iterations. It's also clear that the C-Cost of the HLO algorithm 

is lower than that of the GA. This comparison highlights the 

superior performance of the HLO algorithm in feature selection 

and its ability to quickly approach the optimal solution, making it 

a promising choice for applications in which computational 

efficiency and effective feature selection are essential. 

 

Fig. 4. Cost values of GA and HLO algorithms. 

The classification performances for each layer of both the 

proposed model and the model generated by GA are presented in 

Tables 1 and 2, respectively. For the proposed model, the average 

values of Acc, Prec, F1-score, and C-Cost for all layers were 

measured as %95.28, %95.30, %95.29, and 11.8 seconds, 

respectively. On the other hand, the model built with GA was 

tested and the average values of Acc, Prec, F1-score and C-Cost 

for all layers were measured as %94.65, %94.70, %94.68, and 

32.7 seconds respectively.  

 

Table 1. Performance of the model built with HLO. 
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Selected Features: Fuzzy, Kolmogorov, Distribution, Spectral, 

Increment Entropies 

 
Acc 

 (%) 

Prec 

 (%) 

F1-score 

(%) 

C-Cost 

(sec) 

Fold 1 94.78 94.92 94.85 18.2 

Fold 2 96.09 96.10 96.09 12.2 

Fold 3 94.35 94.36 94.35 11.4 

Fold 4 97.61 97.62 97.61 11.2 

Fold 5 96.30 96.31 96.31 11.1 

Fold 6 95.00 95.02 94.99 11.0 

Fold 7 95.00 94.94 94.97 10.9 

Fold 8 94.13 94.15 94.14 10.8 

Fold 9 94.35 94.36 94.35 10.6 

Fold 10 95.22 95.22 95.22 10.6 

Average 95.28 95.30 95.29 11.8 

 

Table 2. Performance of the model built with GA. 
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Selected Features: Fuzzy, Kolmogorov, Cosine Similarity, 

Dispersion, Conditional, Distribution, Phase, Slope, Bubble, 

Gridded Distribution, Attention Entropies and Entropy of 

Entropy 

 
Acc 

 (%) 

Prec 

 (%) 

F1-score 

(%) 

C-Cost 

(sec) 

Fold 1 95.00 95.01 95.00 45.0 

Fold 2 94.13 94.27 94.20 31.2 

Fold 3 94.78 94.79 94.79 30.8 

Fold 4 94.78 94.84 94.81 26.4 

Fold 5 95.00 95.07 95.03 38.5 

Fold 6 93.26 93.26 93.26 35.2 

Fold 7 94.35 94.41 94.38 31.9 

Fold 8 95.87 95.90 95.89 27.5 

Fold 9 93.91 93.95 93.93 29.7 

Fold 10 95.43 95.44 95.44 30.8 

Average 94.65 94.69 94.67 32.7 

 

When Tables 1 and 2 are considered together, it can be seen 

that both models have classification performances above 90%, 

with a difference of about 1% between them. However, if we 

consider the C-Cost criterion, there is a difference of about three 

times between them. The model built with GA achieved this 

performance with 12 features and an average computation time of 

32.7 seconds. In contrast, the proposed model achieved the same 

performance using only 5 features with an average cost of 11.8 

seconds. It is evident that a model with real-time applicability, 

low C-Cost and a classification performance of around 95% could 

be effectively used by neurologists in the diagnosis of epileptic 

seizures. 

 

4. Conclusions 
 

This study focused on the early diagnosis of epileptic seizures 

using EEG signals. We used an approach that involved extracting 

entropy-based features from these EEG signals and then selecting 



the most relevant features using the HLO algorithm. The resulting 

model achieved an impressive accuracy rate of 95.28% at a 

relatively low C-Cost of 11.8 seconds. Several key criteria were 

used to select the optimal model, including Acc, Prec, F1-score, 

and C-Cost. Rigorous evaluation showed that the model utilizing 

the HLO algorithm for feature selection outperformed other 

models in terms of diagnosing epileptic seizures. Not only did it 

demonstrate superior performance, but it also effectively 

addressed the issue of computational efficiency. 

The proposed model has significant implications for real-time 

epilepsy diagnosis. By enabling the timely detection of epileptic 

seizures, it has the potential to greatly assist neurologists in 

making early diagnoses and thus initiating timely medical 

interventions. This research contributes to both the field of 

epilepsy diagnosis and the wider field of healthcare, highlighting 

the important role that machine learning and optimization 

algorithms can play in improving medical diagnosis and patient 

care. 
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