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Abstract 
  

Monitoring and maintaining the health of gears is crucial for 

the efficient and safe operation of mechanical systems.  Due 

to harsh operating conditions, gear failures such as wear, 

pitting, and breakage are common. This study investigates the 

effectiveness of unsupervised and semi-supervised deep 

anomaly detection methods for identifying distributed pitting 

defects in gears using vibration data. In the experimental 

setup, gear faults of varying severity were created, and 

vibration data from helical gears were recorded for each level 

of fault severity. Autoencoders (AE), Variational 

Autoencoders (VAE), and Deviation Networks (DevNet) have 

been utilized to detect faulty gears. This study presents the 

performance of these techniques in predictive maintenance 

based on the availability of fault data.  

 

1. Introduction 
 

Gears are circular mechanical devices that transmit torque and 

speed at a desired rate and play a vital role in a wide range of 

industrial applications. Since gearboxes operate in harsh 

conditions, different defects may occur in gears including but not 

limited to wear and tear, pitting, fracture, surface fatigue, and 

tooth breakage [1].  These defects can negatively impact the 

performance, efficiency, and reliability of gears and the 

machinery in which they are used. Therefore, the early detection 

of defects is critical to maintaining operational reliability, 

preventing catastrophic failures, optimizing performance, 

extending equipment life, and improving safety in industrial 

environments. For the purpose of detecting anomalies and 

potential issues within gear systems, a diverse array of signals and 

data sources are employed, with vibration signals being the most 

popular among them [2, 3, 4, 5]. Changes in vibration patterns, 

such as increased amplitude or frequency, can indicate problems 

with gears, so time domain [6], frequency domain [7, 8, 9] and 

time-frequency domain methods [8, 10, 11] are used to analyze 

the vibration signal. 

Supervised machine learning and data-driven methods are 

often used to detect gear faults through vibration analysis. 

However, during the training phase of these models, it is not 

always possible to simulate all possible types of faults or fault 

scenarios that may occur in real industrial systems. This 

limitation is due to the diversity and complexity of potential faults 

and the difficulty of reproducing all possible fault conditions in a 

controlled environment. Anomaly detection methods, which 

mostly use only normal data to train the model, may be more 

suitable for detecting faults in gears. 

Anomaly detection is a data analysis technique used to identify 

patterns or data points within a dataset that deviate significantly 

from expected or normal behavior. In this context, an anomaly is 

a data point or observation that does not fit the typical pattern or 

distribution of the majority of the data [12]. Anomaly detection 

can be used for various applications such as credit card fraud 

detection [13, 14], cyber-security intrusion detection [15],  

healthcare abnormal behavior detection [16], traffic scene event 

detection [17, 18], etc. 

Various anomaly detection methods have been employed in 

the literature for the detection of gearbox failures. A deep learning 

technique combining Long Short-Term Memory (LSTM) and 

Support Vector Machine (SVM) techniques is proposed in [19] to 

separate anomalous data from normal vibration signals obtained 

during an endurance test of a reduction gearbox. A method using 

adaptive thresholding and twin support vector machines to detect 

anomalies in wind turbine gearboxes is proposed in [20]. In [21], 

a method that is the combination of variational autoencoder 

(VAE) and LSTM network for anomaly and trend detection in 

industrial robot gear condition monitoring is proposed and in 

[22], the periodicity-enhanced robust principal component 

analysis (PRPCA) approach is used to detect the anomalies in the 

encoder data. 

In this paper, unsupervised and semi-supervised anomaly 

detection methods are used for the detection of distributed pitting 

faults in gears, which is a challenging problem [11]. Distributed 

pitting faults refer to small pits or craters that occur on all the 

tooth surfaces, rather than in a limited area of the gear. 
Determining if a fault exists or emerging in distributed pitting 

might be challenging because the gear vibration accelerations of 

the different fault severities are similar to each other and the 

healthy gear acceleration [11]. For the detection of the distributed 

pitting fault, the unsupervised Autoencoders (AE), Variational 

Auto Encoders (VAE), and semi-supervised Deviation Networks 

(DevNet), which use very few anomaly data in the training set, 

are used. To compare the performances of the methods in 

detecting faults of varying severity, different levels of fault 

severity were simulated by introducing different numbers of pits 

into the tooth surface of helical gears within the test rig. Vibration 

data were collected for each fault level. 

 

2. Experimental Setup 
 

A fault monitoring test rig, as shown in Figure 1, has been set 

up, consisting of a two-stage industry-type helical gearbox,  2.2 

kW DC load motor, and 2.2 kW AC drive motor, which are 

connected by belt pulley mechanisms to eliminate the undesirable 

effects such as of AC - DC motors and misalignment. The input 



shaft position was measured using a 5V DC ME4-S12L-PA type 

inductive sensor, which generates a single pulse for each rotation. 

Additionally, a speed controller for an AC drive motor was 

employed to enable the gearbox to run between 0 and 3000 rpm. 

Table 1 lists the technical details for the gearbox's first and second 

stages. 

 

 

 

Fig. 1. Experimental setup [23] 

 

Table 1. Specifications of the two-stage gearbox 
 

 First Stage Second Stage 

Number of teeth 29/40 13/33 

Normal module (mm) 1.25 2.5 

Pressure angle () 20 20 

Helix angle () 30 15 

 

The vibration signals produced by the gears were collected 

using two PCB 352A76 type accelerometers, which operated 

between 5 and, 16000 Hz. On the housings for the input shaft 

bearings, these accelerometers were positioned perpendicular to 

one another. Using an NI (National Instrument) data acquisition 

system, LabVIEW 7.0 software, and 15 kHz sampling, the raw 

vibration data from accelerometers was recorded on a computer. 

If the gears are angularly misaligned, the surface contact stress 

may not be uniform across the face width of the mating teeth.  In 

such cases, the likelihood of potential future pitting is greatest on 

those tooth surfaces that experience contact stresses in excess of 

permissible limits. 

Initially, a circular pit, measuring approximately 0.7 mm in 

diameter and 0.1 mm in depth, was created on all gear surfaces 

using an electro-erosion machine to simulate the slightest fault 

(F-1). The number of pits was then increased by one to represent 

the progression of distributed pitting faults thought to be caused 

by the presence of angular misalignment (F-2, F-3). Finally, all 

the surfaces of the gear were covered with pits to simulate the 

most severe fault (F-4). The images of the faulty gears are shown 

in Figure 2. 

Raw vibration data was collected continuously over the course 

of 1337 pinion revolutions. Figure 3 shows an example of a 

vibration signal from each class in both the time and frequency 

domains. The gearbox was disassembled and reassembled each 

time to simulate a distributed pitting defect on the pinion gear's 

teeth surfaces. This situation, or manufacturing faults, could have 

caused a modulation that manifests itself as repetitive fluctuations 

for each pinion rotation. 

 

 

 

 

Fig. 2. Gear with pitting faults of different severities 

 

 

 

 

Fig. 3. Raw acceleration signals and their corresponding spectra 

 

3. Methods 
 

To detect distributed pitting faults, unsupervised methods such 

as autoencoders (AE) and variational AE can be used, as well as 

the semi-supervised approach known as DevNet. 
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3.1 Autoencoders (AE) 

 

Autoencoders, initially introduced by Hinton and the PDP 

group in the 1980s [24], are used to compress high-dimensional 

input data into a lower-dimensional latent space while preserving 

key features [25]. Deep autoencoders are the extension of 

traditional autoencoders, designed to capture more complex and 

hierarchical patterns in data. The encoder part of the autoencoder 

compresses the input into a latent space representation, while the 

decoder part expands this low-dimensional latent space 

representation to obtain the output that is equal to the input data. 

The main purpose is to minimize the reconstruction error between 

input and output data. In gear fault detection, the autoencoder is 

trained only with vibration signals of healthy gears. If the input 

vibration signal contains patterns that deviate from the learned 

healthy behavior, the reconstruction error will be large and the 

autoencoder will identify these signals as anomalies that may 

indicate the presence of a gear fault. 

 

3.2 Variational Autoencoders (VAE) 

 

A particular kind of autoencoder known as a variational 

autoencoder (VAE) adds a probabilistic component to the 

encoding procedure. The input that is passed through the encoder 

in VAEs is encoded as a probability distribution, typically a 

Gaussian distribution. VAEs produce the mean and variance 

values that characterize the probability distribution as the encoder 

output rather than a fixed code, as is the case with conventional 

autoencoders [26]. A random sample is taken from the 

distribution created by these mean and variance values in order to 

create a code. The VAE can generate new data by sampling from 

this distribution because this sampling process enables the VAE 

to learn a distribution over the latent space. VAE, whose main 

structure is shown in Figure 4, captures the statistical structure of 

the data in the latent space.  

 

 

 

Fig. 4. Variational Autoencoder Architecture [27] 

 

3.3 Deviation Networks (DevNet) 

 

A deviation network is a semisupervised anomaly detection 

framework described in [28] that gives directly the anomaly score 

as an output using a few labeled anomaly data along with normal 

data. In contrast to other deep anomaly detection techniques that 

use data reconstruction to learn new representations, DevNet 

optimizes the anomaly scores directly, rather than optimizing 

feature representations, because it is built to learn the anomaly 

scores. The DevNet framework comprises three distinct sub-

blocks. The first block is a neural network structure responsible 

for modeling the scalar anomaly function, denoted as , and 

generating an anomaly score as output for a given input. The 

second block is responsible for determining the mean, 𝜇𝑅, and 

associated standard deviation, 𝜎𝑅, of a given set of normal data. 

The final block takes inputs from the first and second blocks, 

namely , 𝜇𝑅, and 𝜎𝑅, and constructs the deviation loss function to 

guide the optimization process. During optimization, the 

objective is to drive anomaly scores towards a reference value, 

𝜇𝑅, for normal data inputs, while aiming to obtain significantly 

deviated anomaly scores from the upper tail. 
 

4. Results 
 

4.1 Data Preprocessing  

 

The dataset consists of five classes, one of which is healthy. Each 

class in the dataset consists of a 3x450000 matrix, where the 

matrix rows correspond to data collected from the horizontal 

acceleration sensor, vertical acceleration sensor, and encoder 

output data. Utilizing encoder data, the horizontal and vertical 

sensor data were segmented into discrete windows per rotational 

cycle, yielding a total of 1337 different datasets per class each 

containing 334 data points. A filtering procedure was applied to 

limit the frequency components between 1000 Hz and 5400 Hz to 

reduce noise-induced distortion [29]. In order to benefit from the 

exceptional capabilities of deep learning methods in image 

analysis, horizontal and vertical acceleration data, each consisting 

of 334 data points, were normalized and written into a 26x26 

matrix to create images [30, 31]. The last 8 pixels were padded 

with zeros to reach the final image size of 26x26, which is the size 

of the square matrix that can be created from 668 data points. As 

a result of this procedure, each data class contains 1337 images. 

Representative images for each class are shown in Figure 5. 

 

 

 

Fig. 5. a) Healthy b) Fault-1 c) Fault-2 d) Fault-3 e) Fault-4 

 

4.2 Application  

 

The architecture of AE, including two blocks as encoder and 

decoder, is as follows: 

The encoder takes an input of shape (26, 26, 1), which 

represents a 26x26 image. It consists of two convolutional layers 

(Conv2D) with 32 and 64 filters, respectively. The output of the 

convolutional layers is flattened to a vector of shape (10816).  It 

then passes through two dense (fully connected) layers with 1024 

and 128 units, respectively. The final layer (latent space) has 50 

units. 

The decoder takes an input of shape (50), which is the output 

of the encoder. It consists of a dense layer with 10816 units, which 

reshapes the data to (13, 13, 64). Then, it uses three transpose 

convolutional layers (Conv2DTranspose) to upsample the data, 

gradually increasing the spatial dimensions. The final layer 

produces an output of shape (26, 26, 1), which aims to reconstruct 

the original 26x26 image.  

The autoencoder was trained using only 70% of the data from 

the healthy class. The reconstruction error values were calculated 

on a test set containing the remaining 30% of the healthy class 

data and data from the faulty classes. The created histogram 



according to the reconstruction values of the test data is shown in 

Figure 6. Input data selected from the test set was classified as 

"Healthy" if reconstruction_error ≤ 459 and "Faulty" if 

reconstruction_error > 459. 

 
 

Fig. 6. Histogram of Reconstruction Errors using AE 

 

VAE is designed to have the same structure as AE. The main 

difference is that the latent space in VAE consists of two vectors 

of 50 dimensions, representing mean and variance.  
The same training and test procedure as for AE was applied, 

and the histogram of the test data according to the reconstruction 

values is shown in Figure 7. Input data selected from the test set 

were classified as "Healthy" if reconstruction_error ≤ 460 and 

"Faulty" if reconstruction_error > 460. 

 

 

 

Fig. 7. Histogram of Reconstruction Errors using VAE 

 

DevNet requires significantly fewer labeled anomalies for the 

training stage. To determine the optimal number of anomaly 

samples for DevNet, the model was trained and tested with 

different numbers of anomaly samples. The results revealed that 

20 samples is the optimal number. Therefore, DevNet was trained 

by taking 70% of the Healthy class and 5 samples of each fault 

type (approximately 0.37% of each class), and then tested with 

the remaining data, the results are shown in Table 2. 

 

Table 2. Accuracies of AE, VAE, and DevNet  
 

 AE Acc. (%) VAE Acc. (%) DevNet Acc. (%) 

H 91.27 94.26 100 

F-1 99.70 99.85 100 

F-2 99.85 99.93 99.77 

F-3 99.40 99.63 100 

F-4 99.63 99.70 100 

TA 99.06 99.39 99.95 

 

The columns of Table 2 show the performance of the methods, 

and the rows show the percentage of correct classification of each 

class. The bottom row shows the total accuracy (TA) of the 

models in healthy/faulty discrimination. When the performances 

are compared, it is seen that the performance of VAE is better 

than AE, while the performance of DevNet is the best, as 

expected, since it is a semi-supervised method. 

In reality, situations may arise where data is not available for 

every possible fault type, or new fault types may appear 

unexpectedly. This raises the question: "Can one fault type 

effectively represent other fault types? To answer this question, 

the DevNet model is trained on a dataset containing 20 examples 

of a single error type and 70% of the Healthy class, rather than a 

dataset containing 5 examples of each error type. The test set 

contains all the remaining faulty data and 30% of the healthy 

class. The results of this approach are shown in Table 3. 

 

Table 3. Accuracy of DevNet trained with only one fault type 
 

Acc. 

(%) 

H F-1 F-2 F-3 F-4 Total 

Accuracy 

F-1 100 100 79.13 88.78 89.23 90.00 

F-2 99.75 65.37 99.92 98.95 99.18 91.45 

F-3 99.75 74.50 93.49 99.70 99.78 92.40 

F-4 100 75.77 73.22 97.91 99.77 87.55 

 
The rows in Table 3 show the performance of DevNet in 

detecting Healthy and different fault types when only instances 

from a single fault class were used in the training set. For instance, 

in the first row, only 20 instances of the F-1 class were employed 

to train DevNet. In the test set, while data belonging to the 

Healthy class and F-1 fault were identified with 100% accuracy, 

the detection accuracy for F-2, F-3, and F-4 faults stood at 

79.13%, 88.18%, and 89.23%, respectively. The discrimination 

accuracy between healthy and faulty is 90%. 

Upon closer examination of the table, it becomes evident that 

the system excels in detecting the fault type utilized in its training, 

exhibiting a notably high success rate. Furthermore, it is notable 

that the system's performance is considerably better when trained 

with moderate faults (F-2 and F-3) compared to training with mild 

and extreme faults (F-1 and F-4).  On the other hand, when the 

system is trained with severe faults (F-3 and F-4), it tends to 

incline towards misclassifying mild faults (F-1 and F-2) as 

healthy. 

 Consequently, the outcomes of this study lead to the 

recommendation of training the DevNet architecture with 

moderate faults. However, even with this adjustment, the DevNet 

model does not attain the same level of performance as the AE 

and VAE models when trained with only a single type of fault. 

 

5. Conclusions 
 

This study delved into the effectiveness of unsupervised and 

semi-supervised deep anomaly detection methods for identifying 

distributed pitting defects in gears using vibration data. Various 

deep learning techniques, including Autoencoders, Variational 

Autoencoders, and Deviation Networks, were employed to detect 

faulty gears. The findings of this study highlight the performance 

of these techniques in predictive maintenance based on the 

availability of fault data. 



To create the dataset, gear failures of different severities were 

generated in the designed experimental setup. The vibration data 

of the helical gears were recorded for each different fault severity. 

To take advantage of the exceptional capabilities of deep learning 

methods in image analysis, one-dimensional vibration signals 

recorded in two axes were converted into images by writing them 

into a matrix. These images were used as input. While AE and 

VAE were trained with only healthy data, DevNet was trained 

with only 20 anomaly instances in addition to healthy data. The 

results indicate that VAE model demonstrated better performance 

than AE model, whereas DevNet outperformed AE models as 

expected when trained with a dataset covering all possible faults 

due to its semi-supervised structure. However, the DevNet model 

did not reach the same level of performance as the AE and VAE 

models when trained with only one type of fault. 
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