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Abstract 
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In this paper, aggregated black-box equivalent models are 

developed from ambient data. The accuracy of the identified 

model parameters is evaluated using error indices. The 

applicability of the derived models for the analysis and 

simulation of large voltage disturbances is also 

demonstrated.    
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1. Introduction 
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The accuracy of power system stability studies relies heavily 

on the accuracy of the adopted models [1]. Therefore, precise 

models are required for all power system assets. Unlike all other 

components, power system loads and distribution networks 

(DNs) are integrated in stability studies using aggregated models 

[2]. The development of such models is very challenging and 

demanding. 

Aggregated models for load and DN analysis can be 

developed using either the component- or the measurement-

based approach [3]. In the former, aggregated models are built 

using a bottom to top approach by exploiting billing results, by 

analysing the behaviour of groups of consumers, and by 

applying statistical analysis [4]. Nevertheless, power system 

loads, and especially DNs, are becoming nowadays more and 

more complex and time-varying [5]. Therefore, the 

measurement-based approach has recently started gaining 

ground due to the advent of new measurement technologies, 

such as the smart meters and the phasor measurement units 

(PMUs). In this approach, aggregated models are developed by 

analyzing field measurements (system responses). 

Usually aggregated models, developed using the 

measurement-based approach, are derived by analysing post 

large disturbance responses (PLDRs), [2], [4]. However, PLDRs 

do not occur frequently. Therefore, it is challenging to maintain 

up-to-date aggregated models using only PLDRs. Thus, recently 

researchers are focusing on the development of aggregated 

models from ambient data, [2], [4], [5]. Ambient data refer to 

the small disturbances, caused from the continuous random 

variations of electrical loads and renewable energy sources [5], 

[6].    

In this paper, several aggregated black-box models are 

developed using ambient data. Βlack-box models can be divided 

into two main categories, namely the static and dynamic models 

[7]. Static models describe the relation between the real/reactive 

(P/Q) power at any time instant with the bus voltage; dynamic 

models express P/Q as a function of voltage and time. In 

particular, a static load model, namely, the polynomial (ZIP) 

model, and three dynamic models, i.e., the exponential recovery 

model (ERM), the second order recovery model (SORM) and 

the autoregressive moving average exogenous (ARMAX), are 

considered and examined. The accuracy of the identified model 

parameters is assessed by appropriate error indices; The 

applicability of the derived models for the analysis of large 

disturbances is also evaluated and quantified.  

The rest of the paper is organized as follows: In Section 2 the 

examined black-box models are presented. The parameter 

estimation procedure is analysed in Section 3. Simulation results 

are provided in Section 4. Finally, Section 5 summarizes the 

main findings of the research and concludes the paper. 
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2. Black-box Model Structures 
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 In this Section, the structure of the examined models is 

briefly explained. 
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2.1. Polynomial Model 
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The second order polynomial also known as ZIP model, since 

it consists of constant impedance (Z), constant current (I) and 

constant power (P) load components is a widely used static load 

model [7], [8]. The mathematical representation of the 

polynomial load model for the P/Q response is given in the 

following generalized form: 
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where, y(V) is the calculated P/Q and V is the bus voltage; V0 

and y0 are the voltage and P/Q immediately prior to the 

disturbance, respectively. The model parameters, yi, express the 

participation of specific load types with respect to the total load 

demand. In particular, for i=1, y1 denotes the fraction of the 

constant impedance, for i=2, y2 represents the fraction of the 

constant current and for i=3, y3 the fraction of the constant 

power load [9]. Note that, 
3

1

1i

i

y
=

=  must apply. 

Con$#@%ple 

2.2. Exponential Recovery Model 
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The ERM describes the P/Q as a non-linear function of 

voltage and time, t, [10], as shown in (2).  
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Here t0 is the disturbance time instant, Tp the recovery time 

constant, as is the steady-state power exponent and at the 

corresponding transient parameter. 

 



2.2. Second Order Recovery Model 
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The SORM is a higher order representation of ERM, that can 

simulate more accurately complex dynamic responses [11]. The 

formulation of SORM is given in generic form by:  
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The development of the SORM requires the identification of the 

model parameters p0, p1, q0 and q1.  
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2.4 ARMAX model 
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An ARMAX model provides a description of the system with 

output, y(t) and input, u(t), distorted by white noise, e(t), as 

shown in (4) in discrete form: 
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where, a , b and c  are the parameters of the autoregressive 

(AR) model, the exogenous inputs and the moving average 

(MA) model, of order pa, pb and pc, respectively [12]. 

In z-domain the ARMAX formulation is given by: 
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where, B(z)/A(z) is the deterministic part of the model and  

C(z)/A(z) is the stochastic one. Polynomials A(z), B(z), and C(z) 

are defined as: 
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3. Black-box Model Derivation 
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In this Section, the proposed black-box model parameter 

identification method is introduced. The parameters of the 

examined models are determined by using ambient data. 

Subsequently, the derived black-box models are used to simulate 

transient responses. More specifically, the following step-by-

step procedure is adopted for the identification of the model 

parameters and their validation. 

• Data recording: data of V and P/Q under normal 

operating conditions (ambient data) are recorded. 

• Black-box models development: the P/Q model 

parameters of ZIP, ERM, SORM or ARMAX are 

identified by using ambient data (sub-Section 3.1). To 

access the performance of the developed models, 

evaluation indexes are used (sub-Section 3.2).  

• Model validation: the effectiveness and accuracy of the 

developed black-box models is validated by using 

transient responses. 
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3.1. Parameter Estimation 
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The P/Q model parameters (θ) are determined by using the 

measured V and P/Q ambient data as input and output, 

respectively, to a curve fitting problem. The unknown model 

parameters of the ZIP, ERM and SORM are estimated via 

nonlinear least square optimization [11]. Specifically, following 

successive iterations the objective function of (7) is minimized: 
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where N is the total number of samples,  y n  and  ŷ n the 

original and the estimated P/Q at the n-th sample, respectively. 

The inputs to this optimization problem are the formulas of the 

examined model, the voltage and P/Q data and an initial random 

estimate of the model parameters. The trust-region-reflective 

algorithm is used to solve the problem. 

The ARMAX model parameters are calculated by using a 

prediction error method [12], [13]. 
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3.2. Model Evaluation 
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The performance of the examined models is evaluated on the 

basis of three indexes. The parameter percentage error (PPE), 

defined in (8) is used to evaluate the accuracy of the estimated 

model parameters: 
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where, θS and θE are the actual (Table I) and the simulated (in 

terms of black-box modelling) parameters. Further, to access the 

accuracy of the simulated responses, the coefficient of 

determination (R2) and the relative error (RE), defined in (9) and 

(10), respectively are calculated. 
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where y  is the mean value of the response. Note that, a 100% 

R2 and 0% PE values, indicate perfect matching. 
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4. Simulation Studies 
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The feasibility of the proposed method is demonstrated on 

the basis of synthetic signals. Real power synthetic signals are 

generated by using the simple simulation model of Fig. 1. The 

black-box block corresponds to the DN that can be represented 

by the models described in Section 2. In particular, the 

following two network configurations are examined: 

• grids dominated by residential-commercial motors, 

represented by either the ZIP or the ERM, 

• grids dominated by small induction machines, 

represented by the SORM.  

For the examined models typical real power parameters have 

been used as summarized in Table 1 [13]. 

Initially ambient data are generated by distorting the V signal 

used to excite the model, with Gaussian noise to imitate random 

load demand fluctuations and other relevant small perturbations 

under normal operating conditions. The simulations are 

conducted, considering a rate of 1000 samples per second (sps) 

and a signal-to-noise ratio (SNR) 30 dB. Fig. 2 demonstrates an 

example of ambient data generated by using the SORM. 

The transient responses used to evaluate the effectiveness and 

accuracy of the developed black-box models are excited by 

applying the following voltage step responses (SR): 

• SR#1: voltage step-down from 1.0 per-unit (p.u.) to 0.8 

p.u. 

• SR#2: voltage step-down from 1.0 p.u. to 0.9 p.u.  

In addition, to replicate measurement errors, the transient 

responses are intentionally distorted by additive white Gaussian 

noise (AWGN), assuming SNR 30 dB. 
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Table 1. Real power response parameters 
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Model Set of parameters 

ZIP θP,ZIP=[0.5, 0.4, 0.1] 

ERM θP,ERM=[0.1070, 1.0411, 0.2047] 

SORM θP,SORM=[2100, 55, 2.5, 150] 
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Fig. 1. Block diagram of the simple simulation model to 

generate synthetic signals. 
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Fig. 2. Ambient response using the SORM. 

4.1. ZIP results 
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By considering the ZIP as the simulation model of Fig. 1, 

ambient P data are generated. These are used to estimate the 

corresponding ZIP model parameters assuming that the 

identification window length (ambient data) varies from 30 s to 

600 s. The identified model parameters are practically identical 

with the actual ones of Table 1 for all window lengths, as %PPE 

differences are very low, i.e., well below 0.1 %. 

The derived models for each window length are used to 

simulate the two step responses; an exemplary case is presented 

in Fig. 3 for SR#1 and window length 600 s. The calculated R2 

and RE are summarized in Fig. 4. It is evident that, the simulated 

responses match very accurately the actual, as the R2 is above 

99.99 % and the corresponding RE below 0.0002%. Results also 

indicate that the window length has an insignificant impact on 

the estimation of the model parameters and consequently to the 

simulated responses. 
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Fig. 3. SR#1 ZIP real power response for a window length of 

600 s. 

Con$#@%ple 

 

 
Fig. 4. ZIP real power response (a) R2 and (b) RE. 
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4.2. ERM results 
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The same procedure is followed also for the ERM. The 

calculated PPE for all model parameters and window lengths is 

presented in Fig. 5. It can be deduced, that at and Tp are 

estimated with relative accuracy, as the corresponding average 

PPE is 0.5 % and 9.3 %, respectively. Conversely, as is not 

identified accurately as PPE exceeds 400 % for all cases. 

Therefore, it can be realized that the ERM cannot be used for the 

ambient analysis. This is also substantiated by Fig. 6 plots, 

where the actual and the simulated transient responses for SR#1 

and SR#2 are compared.  
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Fig. 5. PPE for (a) as, (b) at and (c) Tp. 
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Fig. 6. ERM real power response for (a) SR#1 and (b) SR#2. 

The window length is 300s. 
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4.3. SORM results 
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SORM is also used to simulate transient responses by using 

the model parameters that have been identified from ambient 

data. In this case the proposed procedure fails to estimate 

accurately the model parameters. This entails that the simulated 

transient responses present significant discrepancies from the 

actual as shown in Fig. 7. In fact, the response prior to and after 

the disturbance is captured with relative accuracy. However, the 

developed model cannot represent the transient part at all. 

 
Fig. 7. SORM real power response. 
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4.3. ARMAX results 

Con$#@%ple 

From the ERM and SORM results it can be deduced that the 

dynamic behaviour of the grid cannot be represented accurately 

by using these models. To investigate the complex dynamic grid 

performance under ambient conditions, ARMAX modelling is 

examined. In particular, the ambient data generated by 

incorporating the ERM and the SORM in the black-box block of 

the simulation model of Fig. 1, are used to identify the ARMAX 

model parameters. The model order of the ARMAX model is 

assumed to be varying from 1 to 3 and the window length from 

60 s to 1800 s. Subsequently, the developed ARMAX models 

are used to simulate the step responses of the two test cases.  

The simulated ARMAX responses for SR#1 and SR#2 are 

compared to the corresponding actual ones for the dominated by 

residential-commercial motors grid and the dominated by small 

induction machines grid cases in Figs. 8 and 9, respectively; the 

window length is 300s. Results indicate that the 1st order 

ARMAX model cannot represent the transient part as well as the 

steady-state after the disturbance. Conversely, the 2nd and the 3rd 

order models present almost a perfect match (as indicated in the 

Fig. close-up) with the actual response as the average R2 is 

98.3 % and 99.66% respectively; the RE is 0.13 % and 0.12 %. 

It is also worthy of note, that the examined window lengths have 

an insignificant impact on the calculated parameters and in turn 

to the simulated responses. 
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Fig. 8. Effect of the ARMAX model order on the real power 

response for (a) SR#1 and (b) SR#2. 



 

 
Fig. 9. Comparison of actual and 3rd order ARMAX model real 

power responses for (a) SR#1 and (b) SR#2 for the small 

induction machine dominated grid. 
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5. Conclusions 
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In this paper, the development of black-box dynamic 

equivalent models from ambient data is investigated. Towards 

this objective, the effectiveness of the ZIP, ERM, SORM and 

ARMAX modelling is examined using synthetic signals 

generated from a simple simulation model. The results of the 

conducted analysis have shown that: 

• The ZIP can be used to model residential grids and more 

specifically grids that practically behave as constant 

impedance under disturbances. 

• The ERM and SORM cannot be used to develop 

black-box models from ambient data. 

• The 2nd and the 3rd order ARMAX models can 

accurately represent the distinct characteristics of the 

transient response, i.e., overshoot, the power recovery, 

and the new steady state after the disturbance. spacing 

In summary, it can be deduced that high order models are 

required to analyse the complex dynamic behaviour of power 

DNs. This is more pronounced in modern grids rich in 

inverter-based loads and resources. 
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