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Abstract

Finite difference time domain method (FDTD) is a widely

used numerical method for solving time domain electromag-

netic problems. In this paper, the behaviour of a sine wave

inside a Gaussian envelope propagating through two cas-

cade plasma media is investigated. Perfectly matched layer

(PML) is used as the absorbing boundary condition.

1. Introduction

Finite difference time domain method (FDTD) is a well

known and widely documented numerical method for solving

time domain electromagnetic problems. FDTD has been intro-

duced first by Yee in 1966 [1]. Yee has expressed Maxwell’s

equations as a set of finite difference equations and has shown

that with the appropriate choice of the points at which the field

components are evaluated, these equations can be solved. Later,

it has been revealed that absorbing boundary conditions are

needed to take into account the behaviour of the electromag-

netic fields at the boundaries of the problem space. The per-

fectly matched layer (PML) developed by Berenger [2] is shown

to be an efficient absorbing boundary condition. In this paper,

the behaviour of a sine wave inside a Gaussian envelope which

comes upon two cascade plasma media is investigated.

2. Two Dimensional FDTD Equation

For an electromagnetic wave, two dimensional Maxwell’s

equations can be written as follows by using the FDTD formu-

lation [3]:

En+1
z (i, j) = En

z (i, j) +

Z
∆τ

∆x

[

Hn+1/2
y (i+ 1/2, j)−Hn+1/2

y (i− 1/2, j)
]

−

Z
∆τ

∆y

[

Hn+1/2
x (i, j + 1/2)−Hn+1/2

x (i, j − 1/2)
]

(1)

Here, Z given by

Z =

√

µ

ǫ
, (2)

is the intrinsic impedance of the medium.

3. Absorbing Boundary Conditions

In FDTD modeling, it is not possible to handle open re-

gion problems directly, because of the memory size limitation

in a computer. To overcome this difficulty, several absorbing

boundary conditions are suggested. The aim of an absorbing

boundary condition is to truncate the computational domain so

as to suppress the spurious reflections of outgoing waves to an

acceptable level [4].

Perfectly matched layer (PML) is a flexible and effective

absorbing boundary condition. The basic idea behind the PML

is as follows: If a wave propagating im medium A impinges

upon medium B, the amount of reflection depends on the intrin-

sic impedances of the two media [5]. The electric displacement

vector Dz is given by

Dn+1/2
z (i, j) = gi3(i) gj3(j)D

n−1/2
z (i, j) +

gi2(i) gj2(j) (0.5)
[

Hn
y (i+ 1/2, j)−Hn

y (i− 1/2, j)

−Hn
x (i, j + 1/2) +Hn

x (i, j − 1/2) ] . (3)

The parameters gi2, gi3, gj2, gj3 are given by

gi2(i) =
1

1 + xn(i)
, (4)

gi3(i) =
1− xn(i)

1 + xn(i)
, (5)

gj2(j) =
1

1 + xn(j)
, (6)

gj3(j) =
1− xn(j)

1 + xn(j)
. (7)

Here, xn(i) and xn(j) are given as follows:

xn(i) = 0.33×

(

i

pml length

)3

, (8)

xn(j) = 0.33×

(

j

pml length

)3

. (9)

In Eq. 8 and 9 the indexes i and j change over the dimensions

of the plasma medium:

i = j = 1, 2, 3, ..., pml length, (10)

where pml length shows the dimensions of the plasma medium.

4. Plasma Medium

The permittivity of an unmagnetized plasma is given by [5]

ǫ∗(ω) = 1 +
ω2
p

ω (jvc − ω)
, (11)

where fp is the plasma frequency, ωp = 2πfp is the angular

frequency, and vc is the electron collision frequency. By using

partial fraction expansion, Eq. 11 can be written as

ǫ∗(ω) = 1 +
ω2
p/vc

jω
−

ω2
p/vc

vc + jω
. (12)
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Figure 1. Problem space for two cascade plasma media.

By taking the Z transforms of Eq. 12 we obtain

ǫ∗(ω) =
1

∆t
+

ω2
p/vc

1− z−1
−

ω2
p/vc

1− e−vc.∆t z−1
. (13)

The Z transform of Eq. 12 can obtained as

D(z) = ǫ∗(z)E(z)∆t. (14)

By inserting Eq. 13 into Eq. 14, we obtain

D(z) = E(z) +

ω2
p ∆t

vc

(1− e−vc∆t) z−1 E(z)

1− (1 + e−vc∆t) z−1 + e−vc∆t z−2
. (15)

5. Simulation of the Plasma Medium

A sine wave with a Gaussian envelope is created in the co-

ordinates i = 10, j = 10. This pulse is given by [6]:

f(t) = e
−0.5

(

t0−T

W

)

2

× sin(2πf∆t T ), (16)

where, f is the frequency of the pulse, t0 is the peak of pulse at

the start, T is the period, W is the width of the pulse, and ∆t is

the time step. The cell dimensions are 80× 80. The medium is

free space from i = 0 to i = 29, from i = 41 to i = 49 and

from i = 61 to i = 80. The medium is plasma from i = 30
to i = 40 and from i= 50 to i = 60. The problem space is as

shown in Fig. 1

In Fig. 2, frequency of plasma medium 1 is 2000 THz, fre-

quency of plasma medium 2 is 8000 THz and frequency of pulse

is 4000 THz. Pulse is in free space for n=50 time steps.

In Fig. 3, all frequency values are the same as in Fig. 2.

Pulse has penetrated into plasma medium 1 in n = 150 time

steps, but it has been reflected back from plasma medium 2.

In Fig. 4, frequency of plasma medium 1 is 8000 THz, fre-

quency of plasma medium 2 is 16000 THz and frequency of

pulse is 4000 THz. Pulse is in free space for n=50 time steps.

In Fig. 5, all frequency values are the same as in Fig. 4.

Pulse has been reflected back from plasma medium 1.

In Fig. 6, frequency of plasma medium 1 is 500 THz, fre-

quency of plasma medium 2 is 2000 THz and frequency of pulse

is 4000 THz. Pulse is seen to be in free space for n=50 time

steps.

In Fig. 7, all frequency values are the same as in Fig 6. It

is seen that, for this case, the pulse has penetrated not only into

plasma medium 1, but also into plasma medium 2.
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Figure 2. Electromagnetic field spread in n=50 time steps.
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Figure 3. Electromagnetic field spread in n=150 time steps.
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Figure 4. Electromagnetic field spread in n=50 time steps.
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Figure 5. Electromagnetic field spread in n=150 time steps.
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Figure 6. Electromagnetic field spread in n=50 time steps.

0

20

40

60

80

0

20

40

60

80
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

ji

E
z

Figure 7. Electromagnetic field spread in n=150 time steps.

6. Conclusion

In this work, the propagation of a sine wave with a Gaussian

envelope through two cascade plasma media has been investi-

gated. It is shown that the electromagnetic wave has penetrated

into plasma medium for high frequencies and has been reflected

back for low frequencies, as expected. Plasma medium has a

powerful potential for electronic warfare systems.
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