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Abstract 
   

The signal-to-noise ratio (SNR) is often unknown to the 

receiver in most wireless communication systems. In order 

to perform various functions, SNR needs to be estimated. 

This paper deals with the estimation of SNR in a system that 

is based on quadrature amplitude modulation (QAM) 

signals transmitted through a complex additive white 

Gaussian noise (AWGN) channel. The estimator is designed 

for non-data-aided (NDA) and partially data-aided (PDA) 

scenarios using the maximum likelihood approach. The 

Cramer-Rao lower bound (CRLB) is also derived for the 

estimators. Different types of square and cross QAM have 

been used for performance evaluation of the NDA estimator. 

The PDA case has been observed for different ratios of pilot 

and data symbols. Performance of estimators has been 

compared with CRLB for all cases. 

   

1. Introduction 
   

In many wireless communication systems, the value of 

signal-to-noise ratio (SNR) is unknown to the receiver. An 

estimate of SNR is required, which can be used to perform 

different operations at the receiver end. Some applications 

include handoffs in mobile communication, power control, turbo 

decoding, etc. Many authors have estimated SNR for different 

types of signals using various techniques, including maximum 

likelihood (ML), method of moments (MM), and decision-

directed (DD) method, etc. Maximum likelihood estimation of 

SNR has been presented for frequency shift keying (FSK) in [1, 

2]. References [3-5] deal with maximum likelihood SNR 

estimation for phase shift keying (PSK) signals. The problem of 

SNR estimation for quadrature amplitude modulation (QAM) 

has been proposed in [6, 7] using the method of moments. The 

ML estimation of signal-to-interference-noise ratio (SINR) for 

QAM signals has been discussed in [8]. 

In this paper, we have proposed a maximum likelihood (ML) 

SNR estimator for different types of QAM constellations, i.e. 

square and cross QAM in complex additive white Gaussian 

noise (AWGN) channel. The data used for this estimator may be 

pilot symbols or data symbols. When only pilot symbols are 

used for estimation, the method is called data-aided (DA) 

estimation. When data symbols are used for estimation the 

estimation technique is termed as non-data-aided (NDA) 

estimation. Partially data-aided (PDA) estimation can also be 

done when a combination of pilot and data symbols is used. We 

have presented the NDA and PDA SNR estimation for QAM 

signals in this paper. Cramer-Rao lower bound (CRLB) has also 

been derived for the estimator, which is a lower bound on the 

variance of an unbiased estimator. 

The rest of the paper has been organized such that system 

model has been presented in Section 2. Section 3 deals with the 

maximum likelihood SNR estimator design for PDA and NDA 

cases. The CRLB has been derived in Section 4. Simulation 

results are discussed in Section 5 and the discussion is 

concluded in Section 6.  

   

2. System Model 
   

Consider a wireless communication system where QAM 

signals are passed through complex AWGN channel. The output 

of the receiver’s matched filter is the signal of interest for 

estimating SNR. This signal can be represented as: 

     

   √    √    (1) 

     

where   ,    and    are the     samples of received signal, 

transmitted message signal and complex AWGN respectively. 

√  and √  represent the signal and noise power scale factors, 

respectively, taken in square root form to obtain a simplified 

estimator expression. The received signal and its components 

are complex, so it can be written as:     
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where   and   represent the in-phase and quadrature 

components of the received signal. These in-phase and 

quadrature components can be given as:     
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The parameters to be estimated are   and  , as the SNR is 

given as:     

 

  
 

 
 (5) 

     

The data packet used for estimating SNR is of length  , such 

that the observed received signal packet is                    . 

We assume that the number of pilot symbols and data symbols is 

  and   respectively. The total packet length is thus      . 
   

3. Maximum Likelihood Estimation 
  

In order to find the maximum likelihood estimate of SNR, 

the values of   and   have to be estimated using the ML 

approach. The ratio of these estimated values gives us the 

estimate of SNR.     
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where  ̂  ,  ̂   and  ̂   are maximum likelihood estimates of 

the SNR, signal power   and noise power   respectively. The 

joint probability density function (PDF) of in-phase and 

quadrature components of AWGN can be written as:     
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Thus, the joint PDF of the received symbol    can be written 

as:     
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3.1. NDA ML Estimator 
  

In non-data aided (NDA) estimation of SNR, we estimate 

SNR using actual received data without the knowledge of 

transmitted data. In this case, the received data is demodulated 

and detected, and this estimated message signal is used to 

estimate the SNR. This method requires no additional bandwidth 

as there is no pilot symbol transmission. For the NDA case, the 

whole data packet consists of   data symbols, so we have    . 
The joint PDF presented in the previous section can be re-

written for  , i.e.   data symbols as:     
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where    and    represent the in-phase and quadrature 

components of the received data packet  . Here     and     are 

not known, so we have used their estimates found by the 

receiver’s detection module, written as  ̂   and  ̂  . The log-

likelihood function can be written as:     
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(10) 

In order to find the required ML estimates, i.e.  ̂   and  ̂  , 

we differentiate (10) with respect to   and   respectively, to get:     
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and     
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The average energy of a signal is calculated as:     
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For QAM constellation, the average energy has been given in 

[9]. For square M-QAM:     
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For cross M-QAM:     
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where   is the number of constellation points and   is the 

distance between nearest neighbors within the constellation. 

It can be seen in (11) and (12) that the average energy term is 

present, so these can be simplified as:     

 

 ̂   
*
 
 
∑ (    ̂       ̂  ) 

   +
 

   
  (16) 

     

and 

 ̂   
 

 
∑[(   )

 
 (   )

 
]

 

   

  ̂      (17) 

     

 As discussed in Section 2, the assumption of having signal 

and noise power in square root form is advantageous. Otherwise, 

the expressions obtained above would represent estimates of 

squares of   and  , thus increasing computational complexity. 

Using (16) and (17), the estimated SNR for NDA case can be 

written as:     
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This is the final expression of estimator for NDA case. It can 

be seen that it does not depend on the transmitted symbols, 

rather it depends on the estimates of transmitted symbols 

obtained from the received symbols by the detector. 



3.2. PDA ML Estimator 
  

The ML estimator for partially data aided (PDA) case has 

been derived in this subsection. In this case the received data 

packet used is comprised of pilot and data symbols. According 

to the system model described in Section 2, there are   pilot 

symbols and   data symbols, making the total packet length 

     . This estimator requires more bandwidth than the 

NDA case but less bandwidth than the DA case. The 

performance of this estimator should also be better than the 

NDA estimator as some symbols are known to the receiver. The 

performance was found to improve with the increase in number 

of pilot symbols as compared to data symbols. 

In order to derive the PDA ML estimator, we first require the 

joint PDFs of the received pilot and data symbols. The joint 

PDF for pilot symbols is given by (8) and for data symbols it 

can be written as:     
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The joint PDF for  , i.e. the complete received packet can be 

written as:     
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It can be seen that the log-likelihood function found from the 

joint PDF of (20) is similar to (10), except for the splitting of 

data packet into two portions. So, the maximization of the log-

likelihood function for PDA case is done in the same way as in 

Section 3.1, yielding the estimator equations for   and   as:     
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and 
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By using the average energy equations for square and cross 

QAM given in (14) and (15), we can simplify the estimator 

expression to get:     

 

 ̂   
 ̂  

 ̂  

 
 

(23) 

 
*
 
 

∑ (             ) 
    

 
 
∑ (    ̂       ̂  ) 

   +
 

[
   

 *
 
 

∑ |  |
  

    
 
 
∑ |  |

  
   +  

   *
 
 

∑ (             ) 
    

 
 
∑ (    ̂       ̂  ) 

   +
 ]

 

 

 

The performance of this estimator is different for different 

lengths of pilot and data packet, i.e.   and  , while keeping the 

total packet length,  , same. 

 

4. Cramer-Rao Lower Bounds 
  

The performance of an un-biased estimator can be evaluated 

by a lower bound on the variance of estimator, known as the 

Cramer-Rao lower bound (CRLB). In this section we have 

derived this bound for the designed estimators, considering the 

fully data-aided scenario. The same bound can be used for both 

NDA and PDA cases. However, it will be seen that when data 

symbols are used, the estimator has some bias in the low SNR 

region, so in this region the estimator performance differ from 

the bound. The CRLB of an estimator is given by [10] as:     
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where,      
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In (24),      is called the Fisher Information Matrix, which is 

given as:     
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The elements of Fisher Information matrix are calculated 

using partial derivatives, and the matrix is found to be:     
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] (28) 

which gives the CRLB after putting values in (24) as:     
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When normalized with respect to   , the asymptotic behavior 

of the CRLB can be observed with increase in SNR, which 

becomes normalized mean square error (NMSE) for an unbiased 

estimator:     
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This bound has been used to check the performance of the 

estimators, unbiased estimators approach CRLB.  

 

5. Performance Evaluation 
  

The simulation results for both estimators have been 

presented and discussed in this section. The total packet length 

  has been fixed to 1000 symbols for NDA and PDA cases. The 

results have been averaged for 10,000 trials for square and cross 

QAM. The performance has been evaluated on the basis of two 

parameters, the normalized mean square error (NMSE) and the 

normalized sample bias.  Small NMSE represents good 

performance of the estimator and the bias has been plotted to see 

whether the estimator in unbiased over the whole SNR region or 

if it has bias over some region of SNR. The NMSE of the 

estimators has been calculated as: 
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The normalized sample bias has been given in [5] as:     
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The performance of NDA and PDA estimators has been 

discussed in the next subsections. 

 

5.1. NDA Estimator Performance 
 

The NDA estimator uses only data symbols, so the 

transmitted symbols are not known to the receiver. To cater this, 

we use the estimates of received symbols found by the detector, 

which may have error, especially in the low SNR region. Owing 

to the use of estimated message symbols, the estimator has some 

bias present in the low SNR region. Therefore, this method 

reduces bandwidth requirement of the system at the cost of 

performance degradation. The estimator has been evaluated for 

various types of square M-QAM, i.e. 4-QAM, 16-QAM, 64-

QAM and 256-QAM, and for cross M-QAM, i.e. 32-QAM and 

128-QAM on the basis of NMSE and normalized sample bias 

for a packet length    , where   is the number of data 

symbols. As described earlier in Section 5, the packet length has 

been fixed to 1000 symbols per packet for all types of QAM 

constellations. 

 

 
  

Fig. 1. NMSE and CRLB of SNR estimates for different types 

of square QAM  

  

 
  

Fig. 2. NMSE and CRLB of SNR estimates for different types 

of cross QAM  

  

 
  

Fig. 3. Bias of the estimator for square M-QAM 

 

The NMSE and CRLB for square QAM have been shown in 

Fig. 1, while Fig. 2 is for cross QAM. It can be seen that these 

estimators have some bias in the low SNR region, i.e. when 

SNR is less than 10 dB. As the true message signal is not 

known, this method has a greater chance of giving an erroneous 

estimator. It can be seen that the performance degrades in the 

low SNR region as we increase the number of constellation 

points, i.e. M. However, these estimators approach the CRLB 



with increasing SNR, which is a property of maximum 

likelihood estimators. The bias for these estimators has been 

calculated using (32) and plotted in Fig. 3 and Fig. 4 for the 

different types of square and cross M-QAM respectively. It can 

also be seen from the plots of bias that the estimator bias 

increases as we increase the number of constellation points. The 

degradation in performance in the low SNR region is due to the 

fact that probability of erroneous detection increases with 

increase in constellation size and decrease in SNR. 

  

 
  

Fig. 4. Bias of the estimator for cross M-QAM 

  

5.2. PDA Estimator Performance 

  
The NMSE and CRLB have been evaluated for PDA using 

different values of   and  , i.e. number of pilot and data symbols 

while keeping the total packet length   same, i.e. 1000 symbols. 

The plots for 32-QAM have been shown in Fig. 5 and Fig. 6. 

The number of pilot symbols   has been changed from 100 to 

200, 300, 400 and 500. It can be seen that as we increase the 

number of pilot symbols in the packet, the NMSE is reduced in 

the low SNR region. There is significant difference between 

NMSE for       and      , i.e. the NMSE has been 

reduced by almost 3 times for      .  

 

 
  

Fig. 5. NMSE and CRLB for 32-QAM with different number of 

pilot and data symbols 

  

 

 

 

 
  

Fig. 6. Bias for 32-QAM with different number of pilot and data 

symbols  

 

6. Conclusions 
  

The maximum likelihood SNR estimators for square and 

cross QAM have been designed in complex AWGN using the 

NDA and PDA approaches. The results show that while NDA 

estimator has greater bandwidth efficiency, the estimator has 

some bias in the low SNR region which can be reduced by using 

the PDA approach. The bias is reduced further as we increase 

the number of pilot symbols in the PDA case. Both estimators 

approach CRLB as SNR increases. 
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