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Abstract 
 

Logisitic maps are recently used in the generation of secret 

keys for data encryption. This paper presents a generalized 

form of the fractional logistic map. Two general parameters 

a and b are added to the classical fractional logistic equation. 

The combination of the added extra parameters a and b in 

addition to the system parameter � and the initial condition ��, as well as the fractional order parameter � makes the 

proposed generalized fractional logistic map the most 

favorable in constructing more efficient  encryption keys. 

The effect of such parameters with the fractional order 

parameter 	� offers an extra degree of freedom increasing 

the design flexibility and adding more design controllability. 

The vertical and the zooming map are two special maps that 

arise as a result of the added parameters. Moreover, some 

design problems are presented in this work. This shows that 

any application specific map can be designed, highlighting 

the flexibility and integrity of the map design.  

 

1. Introduction 
 

Chaotic systems have been able to catch the eye of so many 

researchers in the past few decades. A very well-known example 

of discrete chaotic systems is the iterated logistic map [1, 2]. 

Such maps have proved great importance in both the modeling 

and information processing in many fields such as population 

biology [3], medical applications [4], communication [5], and 

encryption [6].  

The fractional calculus has allowed the operations of 

integration and differentiation to be used in wide spread 

applications rather than being restricted to integer order only. 

Recently, fractional-order differential equations have been of 

great interest to many researchers in many areas of science and 

engineering [7]. Such equations are widely studied by analytical 

and numerical methods. Inspired by the discretization of the 

Riemann-Liouville and the Caputo operators, the fractional 

difference equations is a relatively new field to tackle. Some 

research recently introduced the fractional discrete derivatives as 

in [8-9], offering great opportunities to study the dynamics of 

such discrete systems powerfully, as well as their chaotic 

behaviours. 

Several studies concerning the discretization of the fractional 

logistic map and its chaotic behavior are studied in [10-13]. A 

method of generalizinig logistic equations is introduced in [14-

15], by adding general parameters which affect the logistic map 

greatly. Similarly, this work presents the generalization of the 

discrete fractional logistic map exploring the effects of the extra 

general parameters added to the equation in combination with 

the extra degree of freedom offered by the fractional order 

parameter α. 

This paper is organized as follows: Section 2 introduces the 

fractional order logistic map. The proposed generalized 

fractional logistic map is discussed in section 3, where the 

generalized derivations of the fixed points and stability analysis 

of the proposed map is analyzed. The two new special maps are 

also discussed in section 3. Section 4 offers different design 

problems of the proposed maps. Section 5 concludes this work.  

 

2. Fractional order logistic map  
 

The fractional calculus is the generalization of integer 

calculus. This leads to similar concepts with wider generality 

and applicability. The fractional calculus allowed the operations 

of integration and differentiation to be applied upon any 

fractional-order.  

The basic definition of the Riemann-Liouville notation of 

fractional integral of order  α > 0 is given by: 

 

J
f�t� = 1
Γ�α�� �t − τ�
���

�
	f�τ�dτ																			�1� 

 

where J
 represents the fractional integral operator of order α	ϵ	R�,	f�t� is a causal function and Γ is the gamma function.  

The fractional order parameter α  adds extra degree of 

freedom which increases the design flexibility and adds more 

control on design.  

The discretization process can be explained as follows: 

     Consider the fractional-order logistic differential equation 

given by: 

 D
x�t� = ρx�t� 1 − x�t�!,								t > 0																					�2� 
 

Where x�0� = x$ is the initial condition. 

      The study of chaotic behavior of logistic equations with 

piecewise constant arguments is discussed in [16-18]. The 

process of discretization with piecewise constant arguments is 

shown as: 

D
x�t� = ρx %&	tr( r)	*1 − x %&	tr( r)+																					�3� 
 

Where x�0� = x$ is the initial condition. 

The steps of the discretization process used in this work is 

detailed in [10], reaching the final discrete fractional logistic 

equation (4) , where  α is the fractional-order parameter. 

 

  



x-�� = x- + /0
1���
� ρx-�1 − x-�																												�4�  

 

3. Generalized discrete fractional logistic map 
 

The fractional logistic equation (4) is proposed in [10], 

whereas a general study of the logistic map and how to design 

this map under certain constraints, is introduced in [15,16]. 

The proposed general fractional logistic equation is: 

 

x-�� = x- + /0
1���
� ρx-�a − bx-�																									�5�  

 

Where (a,b) are the generalization parameters. First, the 

general case is discussed then two special cases are displayed. 

The two cases are for (a,1),(1,b),where a, b ∈ R� . The next 

section will introduce the three proposed maps with their fixed 

points, range, and the bifurcation diagrams with respect to all 

system parameters. 

 

3.1. Generalized Derivations 
 

The general logistic map is to be analyzed (5), having  r, ρ, α, a  and b as parameters. Having f( x, r, ρ, α, a, b ), let us 

define the range ρ and the maximum value of the bifurcation x789	 , the bifurcation point ρ: , as well as the value of the 

function at the bifurcation point x:. 

 

3.1.1. Fixed points 
 

The fixed points of the map are defined as the points where  x∗ = f�x∗, r, ρ, α, a, b�. 
 

x∗ = x∗ + r

Γ�1 + α� ρx∗�a − bx∗�																						�6� 

 

Therefore, 	ρx∗�a − bx∗� = 0 . This gives two fixed points 

which are x�∗ = 0  and   	x=∗ = a b⁄ . 

 

3.1.2. Range of �  
 

Discussing the positive side of the bifurcation diagram, x-	is 
positive for all iterations, that is  

 

x-	 + r

Γ�1 + α� ρx-	�a − bx-	� 	> 0																									�7� 

 

Putting  k = r
ρ	 Γ�1 + α�⁄ , 

 

x-	 < a
b + 1

bk																																																																		�8� 
 

therefore 		x-	 ∈ [0, 8: + �
:D]   indicating that 

x789 = 8
: + �

:D 																																				�9�  
 

The critical point xF   is the point at which there will the 

function has a maximum, it is calculated by solving the 

derivative of the function dx-�� dx-⁄ = 0	 , i.e. 

 G9HIJ
G9H = 1 + k�a − 2bxF� = 0																					�10a�  

This gives the value of xF	to be: 

 

xF = 8
=: + �

=:D = 9KLM
= 																																			�10b�  

 

Substituting by xF	in (5): 

 

f�xF, r, ρ, α, a, b� = 		 8
=: + �

N:D + 8OD
N: 													�11a�  

 

This value should be less than x789 =	 8: + �
:D, 

 
8
=: + �

N:D + 8OD
N: <	 8: + �

:D 																														�11b�  
 

Neglecting the negative term, k < P
8.  

Substituting by the value of k gives an inequality for ρ: 

 

∴ ρ < 3Γ�1 + α�
a	r
 																																									�12� 

 

Therefore,�x789, ρ789� = �	8: + �
:D , P1���
�

8	/0 � . 
 

3.1.3. Stability conditions  
 

Stability is studied at the fixed points of the map. This is done 

by finding the first derivative of the function. The fixed points 

will be stable if |f S�x∗, r, ρ, α, a, b�| 	< 1 , and will be a saddle 

point if  |f S�x∗, r, ρ, α, a, b�| > 1 . 

Finding the first derivative of the function.   

 

f S�x-, r, ρ, α, a, b� = 1 + /0
1���
� ρ�a − 2bx-�								�13�  

 

At  |f S�x∗, r, ρ, α, a, b�| = 1 , at the fixed points, this is where 

bifurcation takes place. 

At x�∗ = 0  , |f S�x∗, r, ρ:, a, b�| = T1 + /0
1���
� ρ:a	T = 1  , i.e. 

−2 < �r
ρ:a Γ�1 + α��⁄ < 0   ,which is out of our studied 

range. At x=∗ = 8
: ,  |f S�x∗, r, ρ:, a, b�| = T1 + /0

1���
� ρ:�a −
2b 8

:�T = 1  ,i.e. the map will bifurcate at −2 < −ka < 0  , 

i.e.	0 < k < =
8 . 

∴ 0 < ρU < =1���
�
V/0 																																								�14�  

 

Substituting with this value of ρU , yields 	x: ,the function 

value at the bifurcation point. 

Now, two special cases are to be discussed. The first one, 

when a=1 , and the second case is when b=1. 

 

3.2. Vertical Scaling Map: 
 

As shown in the vertical scaling map equation (15),we set the 

parameter	a = 1,in (5), and we have r, b, ρ and α as parameters. 

 

x-�� = x- + /0
1���
� ρx-�1 − bx-�																							�15�  

 

Following the same steps done in section 3.1, and 

substituting for a=1, we get the following equations for fixed 

points, range of ρ and the stability conditions. 

 

There are two fixed points which are x�∗ = 0                         

and x=∗ = 1 b⁄ . 

x789 =	 �: + �
:D 																																													�16�  



xF = 1
2b + 1

2bk																																													�17� 
  

ρ < P1���
�
	/0 																																																			�18�  

 

Therefore,�x789, ρ789� = �	�: + �
:D , P1���
�

	/0 � . 
 

0 < ρ: < =1���
�
/0 																																																			�19�  

 

Figure 1 shows the bifurcation diagrams of (15) versus ρ, for 

different values of α and b. The figures show how α affects the 

shift of bifurcation point ρ: according to (19) with fixed value 

of b, with different values of α = 0.6	and	0.8. While for fixed 

value of α = 0.5,with different values of b, as shown in Fig.2, 

the effect of b on the vertical scaling of the map is shown, 

according to (18), where x789 is inversely proportional to b. 

Figure 3 shows the bifurcation diagrams of (15) versus α for 

fixed ρ = 3.7 , and different values of b. Figure 4 shows the 

changes of of ρ789 and ρ: versus α, for fixed r = 0.25. Taking  α = 0.8  as an example, for r=0.25, ρ789 = 8.47  and ρ: =5.647, as confirmed by Fig.1(c) & (d). 

How x789 behaves versus b is shown in Fig. 5, according to 

(16). This proves that b controls the vertical scaling of the 

bifurcation diagram by controlling the value of x789 . Taking 

Fig.2(a) as an example, where b=0.25, we can find that x789 =5.33.with increasing b to 4, as in Fig.2(b), the value of x789 

decreased to 0.3299. Comparing Fig.1 (a)&(c) and Fig.1 (b)&(d) 

it is so clear that changes in the value of b only affects the 

vertical scaling of the map, with no changes in the horizontal 

axis. Ten snapshots of bifurcation diagrams are plotted versus ρ 

for fixed b=5 , in Fig.6 (a), and versus b for fixed α = 0.4, in 

Fig.6 (b). 

 

3.3. Zooming map  
 

Equation (20) describes the other special case where b=1 in 

(5), and we have r, a, ρ and α as parameters. 

 

x-�� = x- + /0
1���
� ρx-�a − x-�																										�20�  

 

Following the same steps done in section 3.1, and 

substituting for a=1, we get the following equations for fixed 

points , range of ρ and the stability conditions. 

The two fixed points for this case are x�∗ = 0  and x=∗ = a. 

		x-	 ∈ [0, a + �
D]   indicating that 

 

x789 = a + �
D 																																														�21�  

 

xF = 8
= + �

=D 																																																	�22�  
  

 ρ < P1���
�
8	/0 																																															�23�  

Therefore,�x789, ρ789� = �	a + �
D , P1���
�

8	/0 � . 
We also have Y < P

Z	. Rendering a value of 

 

Y[V\ = 3Γ�1 + α�
ρr
 																																															�24� 

 

0 < ρ: < 2Γ�1 + α�
ar
 																																										�25� 

 
 

(a) (b) 

  

(c) (d) 
 

Fig.1.  Bifurcation diagram x versus ρ at r=0.25. 

 

 
 

(a) (b) 

Fig.2. Bifurcation diagram x versus ρ at r=0.25. 

 
 

(a) (b) 
 

Fig.3. Bifurcation diagram  x versus α at r=0.25, 	ρ = 3.7  

 

Fig.4. Changes of ][V\ and ]U versus α, for fixed r =0.25. 

 

Fig.5. Changes of ^[V\ versus b. 

 

  
(a) (b) 

 

Fig.6. 3D Bifurcation diagrams x versus ρ, at	r = 0.3 ,(a) versus α with b = 5, and (b) versus b with α = 0.4. 



Figure 7 (a) & (c) shows the bifurcation diagram of x versus ρ , for r=0.25,a=0.5,and initial condition =0.01 for different 

values of  the fractional order α = 0.7	and	0.9. While Fig.7 (b) 

& (d) shows the bifurcation diagram versus ρ for also r=0.25, 

with a=2, for the same values of α = 0.7	and	0.9, to highlight 

the effect of a on the diagrams. It is clear that a has a horizontal 

shift effect on the bifurcation points, as it is inversely 

proportional to ρ: (25), with also a vertical offset on the vertical 

axis as it appears as an added term in the values of x (21). So, 

the parameter a effect is like a general zooming effect on the 

map. Figure 8 illustrates the bifurcation diagram versus ρ with 

fixed parameters r=0.25, α =0.5 for different values of a ,while  

      Figure 9 (a) shows some snapshots of the bifurcation 

diagrams versus α  for r=0.3 and a=2 for different values of ρ, 

while the bifurcation diagrams versus ρ for r=0.3, α = 0.4 for 

different values of a are plotted in Fig. 9 (b). 

The changes of ρ789 and ρ: versus a, for fixed r = 0.25	and 

fixed α = 0.7 are shown in Fig.10(a).For example, for a = 0.5, ρ789 = 14.39  and ρ: = 9.592 ,which agrees with the results 

shown in Fig.7(a). Also, for a = 2, the value of  ρ789 = 3.597 

and ρ: = 2.398, which also coincides with the results shown in 

Fig.7 (b). Investigating Fig.10 (b), for r = 0.25	 and 	a = 2 , 

taking α = 0.9, as an example, we find that ρ789 = 5.024 and ρ: = 3.349 , which agrees with the results depicted in Fig.7(d). 

As shown in Fig. 11, x789  increases linearly with the 

parameter a, following the equation (21). Comparing Fig.11 

with one of the graphs obtained previously, for example, 

Fig.8(a),where a=0.25,the value of  x789 is found to be 0.346. 

Whereas,Fig.8(b),with increasing a to 2, x789 increases to 2.67. 

Combining this effect of a on x789 ,with the effect on a on ρ789 and ρ: , explained in Fig. 10a, this proves that the 

parameter a has a vertical as well as horizontal scaling on the 

map calling it the zooming effect on the logistic map bifurcation 

diagram. 

From the previous discussed two special cases, we are able to 

scale the bifurcation map with dependent axes by using an extra 

parameter, b for the first case, a for the second case, with the 

extra fractional order parameter α . 

 

4. Design of the proposed map 
 

In this section, different logistic maps are being designed 

showing the possibility of controlling the map parameters easily 

to fit any specific application. According to the equations 

previously derived, the place of the bifurcation point ρ: and the 

value x: , correspondingly, as well as the maximum value of the 

rate ρ789  and the corresponding maximum value of the 

function	x789 are set. All these parameters can be specified and 

the general parameters a and b are to be calculated to realize the 

predefined parameters. The extra degree of freedom provided by 

the fractional order α  gives the flexibility of achieving the 

designs at different values of	α. Four design cases are illustrated 

in Table 1 as examples to the design flexibility provided. As an 

example to this, in the first design, the values of ρ789 and x789 

are specified, and then the values of the parameters a and b are 

calculated fitting the specifications required. Figure 12, shows 

the bifurcation diagrams of each design problem in Table 1. 

Figure 13 is a graphical verification of the values of x789 

specified in the first two designs in Table 1, where x789 relation 

with the parameters a and b is clarified. Whereas, the values of ρ789andρ:, throughout the designs are proven correct according 

to Fig.10. 

 

  

(a) (b) 

  

(c) (d) 

Fig.7. Bifurcation diagram versus ρ for r=0.25 & a=0.5 & 

a=2 for different α. 
 

 
 

(a) (b) 
 

Fig.8. The bifurcation diagram versus ρ for r=0.25, α =0.5.  

  

(a) (b) 
 

Fig.9. The 3D bifurcation diagram (a)  x versus ρ versus α for 

r=0.3,a=2,  (b) x versus ρ versus a for r=0.3, α = 0.4. 

 

  

(a) (b) 

Fig.10. Changes of ][V\ and ]U (a) versus a , for fixed r and 

fixed α , (b)versus α, for fixed r and fixed a. 

 

 

Fig.11. Changes of ^[V\ versus a. 



Table 1. Different design cases 

 
 Required design Equivalent parameters 

Design 1 �_`a = b, �_`a = c� a=0.8862 , b= 0.1182 

Design 2 �d = e, �_`a = b a= 1.1816, b= 0.2626 

Design 3 �_`a = f, �d = e a=  1.2317, b=0.4106 

Design 4 �d = g, �d = g a= 0.8067 , b= 0.1152 

  

  
(a) (b) 

 
 

(c) (d) 
 

Fig.12. Bifurcation diagram versus ρ corresponding to Table 1. 

 
 

Fig.13. Relation of ^[V\ versus a and b. 

 

Chaotic maps are known of their high sensitivity on initial 

conditions, as well as being deterministic and easily 

reproducible. These characteristics made them very suitable for 

pseudorandom sequences generation, which are used in many 

applications such as data encryption [6,19]. Xoring the 

characters of the plaintext with the output sequence of the map 

produces what is called the ciphertext. The successive iterations 

of the chaotic system makes the ciphertext less dependent on the 

plaintext. The combination of the added extra parameters a and 

b in addition to the system parameter ρ and the initial condition x� , as well as the fractional order parameter α  makes the 

proposed generalized fractional logistic map the most favorable 

in constructing more efficient  encryption keys. 

 

5. Conclusion 
 

A generalization of the fractional logistic map is proposed in 

this work. The effect of the generalization parameters a and b, in 

scaling the map horizontally and vertically is shown. This 

scaling effect resulted in two types of maps, the vertical and the 

zooming map. The fractional order parameter	α	 added an extra 

degree of freedom in the design of the proposed map. Some 

design examples are illustrated showing the controllability of the 

map as well as the design flexibility to fit any specific 

application such as data encryption. The mixing of the 

generalized parameters, the map parameter ρ  and the initial 

condition x�, as well as the fractional order parameter α offers a 

great variety for constructing more efficient encryption keys. 
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