
CAMs and High Speed High Precision Data for Trigonometric Functions

N. TAHIR1,2, S. TAGZOUT1 , A. A. EL OUCHDI1

1 Centre de Développement des Technologies Avancées, Division of Microelectronics & Nanotechnologies,

Cité du 20 Août 1956 BP.17 Baba Hassen 16303 Alger Algérie.
2 University USTHB, Faculty of Electronic and Computer Science, LCPTS Laboratory, Algiers, Algeria.

ntahiri@cdta.dz, stagzout@cdta.dz, aelouchdi@cdta.dz

Abstract

When high performance is required, the needed hardware

implementation of trigonometric functions becomes often

problematic. This paper generalizes and improves a CAM

based arctangent architecture that has shown an exclusive

appropriateness for some critical applications compared to

the Look up Table based solution, the polynomial and the

rational approximations. For more illustration, detailed

design specifications and different sinus function

implementation results are given.

Keywords— Trigonometric functions, CAM, high precision,

VLSI.

1. Introduction

Computation of the trigonometric values is a most important

operation in modern engineering technology. However, its

difficult hardware implementation is always emphasized on the

resolution of the compromise between speed, accuracy and

hardware resource consumption [1]. Almost every paper

presenting a trigonometric computing solution starts with a

summary of the three usual trigonometric computing approaches

that are high order polynomial approximations, rational

approximations and Look Up Table (LUT) based methods. In

[2] the CORDIC (Coordinate Rotation Digital Computer)

algorithm was presented as a cost effective method for

performing rotations on vectors in the 2-D plane. This algorithm

was extended into rotations in circular, linear and hyperbolic

coordinate systems and then, many implementations of the

CORDIC have been made, both for fixed-point and floating-

point with respect to the input.

As it is shown in [3], one can compute trigonometric functions

using an expansion series like:

𝑠𝑖𝑛(𝑥) = 𝑥 −
𝑥3

3!
+

𝑥5

5!
− ⋯ (1)

In [4] a dedicated algorithm for trigonometric computing

functions using the Logarithmic Number System (LNS) based

on the laws of sinus and cosines is proposed, it uses a novel

addressing of buffer with the middle-order bits of the LNS

representation.

In [5] a Content Addressable Memory (CAM) based solution

for reducing as much as possible the pipeline stages to better

control the accuracy output and overcome the related drawbacks

in the existing approximation implementations is proposed as

well as an address decoding independent from the input tangent

precision to overcome the related drawback in the usual LUT

based solutions. This proposed method is used if and only if the

three following requirements are satisfied [6]:

1- Input values are coded as fixed point two's complement

numbers.

2- The performances of the core design should not be driven

by the input signal precision. Large word input data like 32

bit words should be accepted. Then, the use of the usual

LUTs based methods should be avoided.

3- The core should present the least possible pipeline stages to

be used in the implementation of feedback algorithms.

Hence, the use of large operators and the use of high order

approximations should be avoided.

In fact, these requirements apply for algorithms containing other

trigonometric function and then it can be generalized as

presented in Fig.1.

Yes

No

3 Requirements

satisfied

 ‘Segmentation’ to consider

monotone parts of the

functions

Re-expression of the

function to fit the CAM’s

based implementation

Considere the function's

symmetry or asymmetry

to reduceing the storage
area and processing time

Use the CAMs and a hot code

decoder to generate the

searched output

Begin

End

Fig.1. Global flow to use the CAMs based method

mailto:ntahiri@cdta.dz
mailto:stagzout@cdta.dz
mailto:aelouchdi@cdta.dz

The idea is to adapt the existing Arctan CAM solution used in

[6] to any trigonometric functions by applying it to segments

where the function is monotone (continually increasing or

decreasing) and handle the function symmetries and

asymmetries with appropriate adapters that indicate the polarity

and the segment position to retrieve the searched outputs.

Fig.1. shows a global flow that may be applied for applications

satisfying the three requirements listed above.

This method reduces the area, the time consumption and the

power compared to the others methods e.g. when the bit width

of the sinus value is 16, the angle resolution is π/180 (1°) and

the range going from[0, π/2], then the memory length is reduced

from 2^16=655368 words to 90 words. In this paper we are

showing an adaptation and implementations results when sinus

is needed. In section II we show how the segmentation of the

function is done, in section III we discuss about the adaptation

of the existing Arctan CAM based solution to sinus function and

finally in section IV we present the implementation results.

2. Sinus function segmentation

Since the sinus function is periodic and using the principle

of monotony, we have divided the period into four parts ([-π, π]

in our case) as it is represented in Fig.2.

The Ф values in part I (Ф ϵ [0, π/2]) is the most important part

in which sinus values are increasing and ranging between 0 and

1. The values of the Ф angle and its sinus are respectively stored

in the buffer.

In the part II (Ф ϵ [π/2, π]), using the trigonometric formula sin

(π- Ф) = sin (Ф), the sinus value is obtained from the buffer by

first calculating a new value of Ф (Ф’= π- Ф) then reading the

value of its function (sin (Ф’)) from the ROMs.

For part III (Ф ϵ [-π/2, 0]) and part IV (Ф ϵ [-π, -π/2]), sinus

values are the same as in part I and II respectively with negative

values which are obtained by performing two's complement of

sinus values in part I and part II respectively.

The representation of the ф values and their sinus are coded in

fixed-point numbers [7]. The fixed-point representation of a

number is given by the following equation:

 𝑥 = 𝑠 + 𝑥𝐼𝑁𝑇 + 𝑥𝐹𝑅 (2)

Where s is the sign bit, xINT and xFR represent the integer and the

fraction parts. A binary number B represented in fixed point can

be converted into a decimal number x by the following equation:

𝑥 = −𝐵𝑠2𝐼𝑁𝑇 + ∑ 𝐵𝑖2𝑖 +𝑖=𝐼𝑁𝑇−1
1 ∑ 𝐵𝑖2−𝑖2

𝑖=𝐹𝑅 (3)

The representation of both ф and sin (ф) in 16 bits binary value

is represented in the Table 1:

Table 1. Sinus values expression

 decimal

value

Bit

sign
(S)

Integer

(m)

Fraction

(f)

Ф 6°.5 0 0000110 10000000

sin 0.10452846 0 0 00011010110000

3. Generalizing the CAM based solution for other

trigonometric functions

The conceptual block diagram of the used circuit is

composed with two essential parts that are the comparator and

the decoder as it is shown in Fig.3 :

Where:

 "pre_ (Ф)" is the pre-computed Ф value loaded in the angle

Ф buffer.

 "(Ф)" is the computed and input angle Ф value obtained

from an arithmetic unit.

 "N" as the angle's number.

Fig.2. Sinus function segmentation

Ф_Buffer Comparators

Pre-Ф0

Pre-Ф1

Pre-Фmax

Ind[0]

Ind[2]

Ind[N-1]

sin(Ф)

Computed_Ф

Decoder

≥

≥

≥

Ind[0]

Ind[N-1]

≟ 1

≟ 0

Sel_Min

Sel_Max

Fig.3. Sinus conceptual block diagram

 "Ind[i]" as the ith comparator's indicator. Considering that

0 ≤ 𝑖 < 𝑁 .

 "sin(Фmin)" as the smallest sinus value corresponding to 𝑖 =

0

 "sin(Фmax)" as the largest sinus value corresponding to 𝑖 =

𝑁 − 1.

 "sin(Ф[i])" as the sinus value corresponding to the ith angle

Ф_buffer word and to the Ind[i].

During the initialization period, all the Ф and sin (Ф) values in

the [0, π/2] interval are stored in the buffer. When the input

angle is compared to every stored data in the buffer (pre_(Ф)).

By default, each comparator's indicator (Ind[i]) is set high.

When the computed (Ф) is larger or equal to the considered

pre_(Ф), the comparator's output indicator (Ind[i]) is set low,

then the decoder generates the searched sin(Ф) value according

the three exclusive cases:

 Sin (Ф) min is output when Ind [0] is kept high.

 Sin (Ф) max is output when Ind [N-1] is set low.

 Sin (Ф[i]) is output when Ind[i] is different from Ind [i+1].

These selection cases are illustrated in Fig.4.

The general bloc diagram for recovering the result for the whole

period [−π,π] is explained in section II and is illustrated in

Fig.5.

Fig.5. Sinus core extension to cover the full range [−𝜋,𝜋]

4. Implementation results

The most critical part of the CAM is the comparator

implementation that depends on the Ф world length. In any kind

of technology, to favor the speed, appropriate resources and

algorithms need to be chosen in order to minimize the

comparator's propagation delay from the Most Significant Bit to

the Least Significant one. The Decoder receives the comparator

indicators and outputs the searched value Ф.
The design was done by the Cadence NCLAUNCH tool, the

logic synthesis was achieved using RTL COMPILER using the

CMOS 0.18µ technology. Table 2 shows the synthesis results:

Table 2. The generated reports

Instance Cells Leakage

Power(nW)

Dynamic

Power(nW)

Top module 2703 1443.329 4043474.682

The comparator 1457 617.061 1484685.343

The decoder 1246 826.267 2459704.571

The logic gates area of the module core is given in

Table 3.

Table 3. The areas reports

Type Instances Area Area %

sequential 1009 42973.235 65.2

inverter 60 395.136 0.6

logic 1634 22535.923 34.2

total 2703 65904.294 100.0

for 0 ≤ 𝑖 < 𝑁 − 1

compare

Ф[i] to pre_(Ф)

SinФ1

= 0

SinФ1=

Sin Фmax
SinФ2=

Sin Ф[i]

SinФ2,3

= 0

SinФ3=

SinФmin

Sin(Ф)= sin(Ф1) or sin(Ф2) or sin(Ф3)

Ind[N-1]=0

for 0 ≤ 𝑖 < 𝑁 − 1

Ind[i]≠Ind[i+1]

Ind[0]=1

yes no yes

yes

no

no

Fig.4. Sinus functional diagram

Absolute value

|Ф|

Ф

Sinus core

Ф= π-Ф

Ф<π/2

2’s complement

|Ф|

| sin(Ф)|

 sin(Ф)

Sign bit

No

Yes

4.1. Physical implementation

After the logical synthesis, the physical implementation

was made by Encounter Digital Implementation (EDI) [8] from

Cadence tool. It carries out the placement and the routing by

placing the resulting Netlist of the logical synthesis into a layout

while respecting the steps of the physical implementation. The

obtained Layout is shown in Fig.6.

5. Conclusion

In this work we have presented a generic approach for

implementing trigonometric functions using high precision input

data and a CAM based architecture. This method reduces

required memory sizes compared to look up table based

solutions and it gives desired output precisions while preventing

from using large operators and large pipeline paths. The sinus

core was successfully verified, synthetized and implemented

using the CMOS 0.18µ technology and a Cadence flow.

6. References

[1] Z. ZHIHENG and W. DONGCHENG, ”An Algorithm

for Computing the Value of Arbitrary Angle

Trigonometric Function”, International Conference on

Transportation, Mechanical, and Electrical Engineering

(TMEE), December 16-18, Changchun, China, 2011.

[2] C. DONG and C. HE, “Implementation of Single-

Precision Floating-Point Trigonometric Functions with

Small Area”, International Conference on Control

Engineering and Communication Technology

(ICCECT), 2012.

[3] S. BALAC and F. STURM , “Algébre et analyse” cours

de mathématiques page 781.2003

[4] M. G. ARNOLD, “Approximating Trigonometric

Functions with the Laws of Sines and Cosines using the

Logarithmic Number System”, Proceedings of the 8th

Euromicro conference on Digital System Design

(DSD’05), Lehigh University Bethlehem, PA 18015

USA, 2005.

[5] K. PAGIAMTZIS and A. SHEIKHOLESLAMI,

“Content-Addressable Memory (CAM) Circuits and

Architectures: A Tutorial and Survey”, IEEE

JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41,

NO. 3, MARCH 2006.

[6] S. TAGZOUT and A. BELOUCHRANI, “Arctangent

architecture for high speed and high precision data”,

Journal of Circuits, Systems, and Computers Vol. 20,

No. 7, 1243-1259, 2011.

[7] L. Y. MING, “An Optimization Framework for Fixed-

point Digital Signal Processing”, Thesis for the Degree

of Master of Philosophy in Computer Science and

Engineering The Chinese University of Hong Kong

August, 2003.

[8] “Encounter Digital Implementation System User

Guide” Product Version 10.1.2 July 2011

Fig.6. Layout of the Sinus core

