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Abstract 

When high performance is required, the needed hardware 

implementation of trigonometric functions becomes often 

problematic. This paper generalizes and improves a CAM 

based arctangent architecture that has shown an exclusive 

appropriateness for some critical applications compared to 

the Look up Table based solution, the polynomial and the 

rational approximations. For more illustration, detailed 

design specifications and different sinus function 

implementation results are given. 
 
Keywords— Trigonometric functions, CAM, high precision, 

VLSI. 

1. Introduction 

 
Computation of the trigonometric values is a most important 

operation in modern engineering technology. However, its 

difficult hardware implementation is always emphasized on the 

resolution of the compromise between speed, accuracy and 

hardware resource consumption [1]. Almost every paper 

presenting a trigonometric computing solution starts with a 

summary of the three usual trigonometric computing approaches 

that are high order polynomial approximations, rational 

approximations and Look Up Table (LUT) based methods. In 

[2] the CORDIC (Coordinate Rotation Digital Computer) 

algorithm was presented as a cost effective method for 

performing rotations on vectors in the 2-D plane. This algorithm 

was extended into rotations in circular, linear and hyperbolic 

coordinate systems and then, many implementations of the 

CORDIC have been made, both for fixed-point and floating-

point with respect to the input.  

As it is shown in [3], one can compute trigonometric functions 

using an expansion series like: 

 

𝑠𝑖𝑛(𝑥) = 𝑥 −
𝑥3

3!
+

𝑥5

5!
− ⋯                    (1) 

 
In [4] a dedicated algorithm for trigonometric computing 

functions using the Logarithmic Number System (LNS) based 

on the laws of sinus and cosines is proposed, it uses a novel 

addressing of buffer with the middle-order bits of the LNS 

representation.  

In [5] a Content Addressable Memory (CAM)  based solution 

for reducing as much as possible the pipeline stages to better 

control the accuracy output and overcome the related drawbacks 

in the existing approximation implementations is proposed as 

well as an address decoding independent from the input tangent 

precision to overcome the related drawback in the usual LUT 

based solutions. This proposed method is used if and only if the 

three following requirements are satisfied [6]:  

 

1- Input values are coded as fixed point two's complement 

numbers. 

2- The performances of the core design should not be driven 

by the input signal precision. Large word input data like 32 

bit words should be accepted. Then, the use of the usual 

LUTs based methods should be avoided. 

3- The core should present the least possible pipeline stages to 

be used in the implementation of feedback algorithms. 

Hence, the use of large operators and the use of high order 

approximations should be avoided.  

In fact, these requirements apply for algorithms containing other 

trigonometric function and then it can be generalized as 

presented in Fig.1.  
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Fig.1. Global flow to use the CAMs based method 

mailto:ntahiri@cdta.dz
mailto:stagzout@cdta.dz
mailto:aelouchdi@cdta.dz


The idea is to adapt the existing Arctan CAM solution used in 

[6] to any trigonometric functions by applying it to segments 

where the function is monotone (continually increasing or 

decreasing) and handle the function symmetries and 

asymmetries with appropriate adapters that indicate the polarity 

and the segment position to retrieve the searched outputs.  

Fig.1. shows a global flow that may be applied for applications 

satisfying the three requirements listed above. 

This method reduces the area, the time consumption and the 

power compared to the others methods e.g. when the bit width 

of the sinus value is 16, the angle resolution is π/180 (1°) and 

the range going from[0, π/2], then the memory length is reduced 

from 2^16=655368 words to 90 words. In this paper we are 

showing an adaptation and implementations results when sinus 

is needed. In section II we show how the segmentation of the 

function is done, in section III we discuss about the adaptation 

of the existing Arctan CAM based solution to sinus function and 

finally in section IV we present the implementation results. 

2. Sinus function segmentation 

 
Since the sinus function is periodic and using the principle 

of monotony, we have divided the period into four parts ([-π, π] 

in our case) as it is represented in  Fig.2.  

The Ф values in  part I (Ф ϵ [0, π/2]) is the most important part  

in which sinus values are increasing and ranging between 0 and 

1. The values of the Ф angle and its sinus are respectively stored 

in the buffer.  

 

 

 

 
In the part II (Ф ϵ [π/2, π]), using the trigonometric formula sin 

(π- Ф) = sin (Ф), the sinus value is obtained from the buffer by 

first calculating a new value of Ф (Ф’= π- Ф) then reading the 

value of its function (sin (Ф’)) from the ROMs. 

For part III (Ф ϵ [-π/2, 0]) and part IV (Ф ϵ [-π, -π/2]), sinus 

values are the same as in part I and II respectively with negative 

values which are obtained by performing two's complement of 

sinus values in part I and part II respectively.  

The representation of the ф values and their sinus are coded in 

fixed-point numbers [7]. The fixed-point representation of a 

number is given by the following equation: 

                                  𝑥 =  𝑠 + 𝑥𝐼𝑁𝑇  +  𝑥𝐹𝑅                            (2) 

Where s is the sign bit, xINT and xFR represent the integer and the 

fraction parts. A binary number B represented in fixed point can 

be converted into a decimal number x by the following equation: 

𝑥 = −𝐵𝑠2𝐼𝑁𝑇 + ∑ 𝐵𝑖2𝑖 +𝑖=𝐼𝑁𝑇−1
1 ∑ 𝐵𝑖2−𝑖2

𝑖=𝐹𝑅        (3) 

The representation of both ф and sin (ф) in 16 bits binary value 

is represented in the Table 1: 

 
Table 1. Sinus values expression 

 
 decimal 

value 

Bit 

sign 
(S) 

Integer 

(m) 
 

Fraction 

(f) 

Ф 6°.5 0 0000110 10000000 

sin 0.10452846 0 0 00011010110000 

 

3. Generalizing the CAM based solution for other 

trigonometric functions 

 
The conceptual block diagram of the used circuit is 

composed with two essential parts that are the comparator and 

the decoder as it is shown in Fig.3 : 

 

 
Where: 

 "pre_ (Ф)" is the pre-computed Ф value loaded in the angle 

Ф buffer. 

 "(Ф)" is the computed and input angle Ф value obtained 

from an arithmetic unit. 

  "N" as the angle's number. 

Fig.2. Sinus function segmentation 
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Fig.3.  Sinus conceptual block diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 "Ind[i]" as the ith comparator's indicator. Considering that  

0 ≤ 𝑖 < 𝑁 . 

 "sin(Фmin)" as the smallest sinus value corresponding to 𝑖 =

0 

 "sin(Фmax)" as the largest sinus value corresponding to 𝑖 =

𝑁 − 1. 

 "sin(Ф[i])" as the sinus value corresponding to the ith angle 

Ф_buffer word and to the Ind[i]. 

During the initialization period, all the Ф and sin (Ф) values in 

the [0, π/2] interval are stored in the buffer. When the input 

angle is compared to every stored data in the buffer (pre_(Ф)). 

By default, each comparator's indicator (Ind[i]) is set high. 

When the computed (Ф) is larger or equal to the considered 

pre_(Ф), the comparator's output indicator (Ind[i]) is set low, 

then the decoder generates the searched sin(Ф) value according 

the three exclusive cases: 

 Sin (Ф) min is output when Ind [0] is kept high. 

 Sin (Ф) max is output when Ind [N-1] is set low. 

 Sin (Ф[i]) is output when Ind[i] is different from Ind [i+1]. 

These selection cases are illustrated in Fig.4. 

 

 

 

 

 
 

 

The general bloc diagram for recovering the result for the whole  

period [−π,π] is explained in section II and is illustrated in 

Fig.5. 

 

 

 

 

 
 

Fig.5. Sinus core extension to cover the full range [−𝜋,𝜋] 

 

4. Implementation results 

 
The most critical part of the CAM is the comparator 

implementation that depends on the Ф world length. In any kind 

of technology, to favor the speed, appropriate resources and 

algorithms need to be chosen in order to minimize the 

comparator's propagation delay from the Most Significant Bit to 

the Least Significant one. The Decoder receives the comparator 

indicators and outputs the searched value Ф.  
The design was done by the Cadence NCLAUNCH tool, the 

logic synthesis was achieved using RTL COMPILER using the 

CMOS 0.18µ technology. Table 2 shows the synthesis results: 

 

Table 2. The generated reports 

 
Instance Cells Leakage 

Power(nW) 

Dynamic 

Power(nW) 

Top module 2703 1443.329 4043474.682 

The comparator 1457 617.061 1484685.343 

The decoder 1246 826.267 2459704.571 

 

The logic gates area of the module core is given in     

Table 3. 
 

Table 3. The areas reports 

Type Instances Area Area % 

sequential 1009 42973.235 65.2 

inverter 60 395.136 0.6 

logic 1634 22535.923 34.2 

total 2703 65904.294 100.0 
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Fig.4. Sinus functional diagram 
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4.1. Physical implementation 

 
After the logical synthesis, the physical implementation 

was made by Encounter Digital Implementation (EDI) [8] from 

Cadence tool. It carries out the placement and the routing by 

placing the resulting Netlist of the logical synthesis into a layout 

while respecting the steps of the physical implementation. The 

obtained Layout is shown in Fig.6. 

 

 
 

5. Conclusion 

 
In this work we have presented a generic approach for 

implementing trigonometric functions using high precision input 

data and a CAM based architecture. This method reduces 

required memory sizes compared to look up table based 

solutions and it gives desired output precisions while preventing 

from using large operators and large pipeline paths. The sinus 

core was successfully verified, synthetized and implemented 

using the CMOS 0.18µ technology and a Cadence flow. 
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