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Abstract 
 

In this paper, formation reconfiguration for a multi-agent 

system is considered wherein a group of agents should move 

to a desired formation. Agents are restricted with 

neighborhood connections and also the maximum size of 

connection links among agents is limited. To obtain a well-

structured topology for desired reconfiguration process 

considering the constraints, graph algebraic connectivity is 

used. A graph optimization problem is formed to obtain the 

communication topology with the largest algebraic 

connectivity in desired formation. An algorithm is 

presented to solve the optimization problem. After the well 

topology is determined, reconfiguration is accomplished 

with force the agents to move desired positions. To this end, 

the agents control problem can be formed as differential 

game, and the open-loop Nash equilibrium can be applied 

as formation control strategy. An example with four agents 

verified that the formation communication topology with 

the largest algebraic connectivity is well in order of 

accomplish formation with less distance error.  

 

1. Introduction 
 

This paper deals with the follow problem: a networked 

multi-agent autonomous system should be change its initial 

formation to a desired. Each agent can see only its neighbors in 

both initial and desired formation. When the formation 

reconfiguration is accomplished, in the desired formation each 

agent's neighborhood maybe change. Each agent and its 

interaction with the neighbors is represented by a node and 

edges at an undirected graph. Since that interaction network 

has restricted resources, it can support a limited number of 

inter-agent connections. In graph representation, this means a 

graph with bounded edge number. The networked system 

requires reconfiguration to a desired formation with 

considering the constraints of neighborhood (local) interactions 

and limited resources. In this paper, a graph optimization 

problem presented that through solving it, the inter-agent 

correspondences determined. The optimization problem 

considers maximizing the graph connectivity through 

modification on edge connections.  

Formation is a natural behavior. Birds and fish usually have 

collective motion in group foraging. They employ special 

geometrical patterns and as need due the environmental 

conditions, the reconfiguration in formation can be 

accomplished. Inspiring formation in nature and due its 

advantages for animal groups, engineers aim to employ 

formation in mobile agents. Formation control is a basic 

problem in multi-agent autonomous systems for applications in 

unmanned vehicle systems. Establishing formation of 

Unmanned Ground Vehicles [1], [2], Unmanned Aerial 

Vehicles (UAVs) [3], and Unmanned Underwater Vehicles [4] 

are some of formation applications inspired from quadrupeds, 

birds, and fish.  

Dynamics of group interactions in a networked multi-agent 

system can be modeled through graph theory. The network 

topology sensitivity can be analyzed through algebraic 

connectivity. A network with maximized algebraic connectivity 

has better convergence speed, robustness and synchronization 

[5]. Fiedler eigenvalue [6] is prominent parameter to evaluate 

the connectivity properties in networked systems. A well 

connected network has better speed of convergence and its 

Fiedler eigenvalue has larger magnitude, i.e. well connectivity 

means the larger Fiedler eigenvalue and vice versa. In 

unweighted edge graphs, a main approach to maximizing 

connectivity or Fiedler eigenvalue is the modifying of the edge 

connections [7, 8]. Design of network topology considering 

connectivity, robustness and convergence is investigated in [7, 

9]. Fiedler eigenvalue as convergence speed parameter is 

studied at [10, 11]. In this paper, the graph connectivity through 

maximizing Fiedler eigenvalue is the approach follow to design 

interaction network topology in desired formation. The aim is 

to reach better convergence speed when the agents move to 

perform reconfiguration. 

A control strategy is needed to perform collective motion 

toward the desired formation after inter-agent correspondence 

is determined. This paper discusses about agents with double-

integrator dynamics. The dynamics of each agent is coupled 

with its neighbors in the assumed multi-agent system. In such 

control problem, differential game theory and Nash equilibrium 

concept can be used to find optimal control input to agents. 

Game theory refers to mathematically studying of interactive 

decision making among a multi-agent team [12]. Formation 

control can be stated as a non-cooperative game [13], such that 

the team objective is to keep a formation while each individual 

involved pursues his/her own interest which is partly 

conflicting with others. The non-cooperative game solution is a 

Nash equilibrium concept that can be used as the formation 

strategy by the agents. Formation control problem was 

formulated as a linear-quadratic Nash differential game in [13]. 

Formation control of multiple UAVs under distributed 

information assumption was formulated as Nash differential 



game in [3]. Time-varying formation control using feedback 

information Nash differential game is investigated at [14].  

This paper is organized as follows: system dynamics, graph 

theory basis, proposed graph optimization problem and open-

loop Nash equilibrium are stated in section 2. A case study of 

formation reconfiguration for a four agents is derived in Section 

3. Conclusion is stated in Section 4. 

 

2. Problem Definition 
 

2.1. System Dynamics 
 

Suppose a multi-agent autonomous system with N agents. 

An agent i  has a double integrator dynamics  Ni ...1:  
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where
nI is identity matric with order n and operator  shows 

the Kronecker product. Dynamics (1) is controllable and 

observable. 

Let to represent all the agent states of the whole system 

with   nNT

N Rzzz 2

1 ,...,  . Therefore, the whole system 

dynamics can be arranged as 
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where matrices A and
iB are 
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Also, let to define the state vector of a neighbor
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2.2. Graph Representations 
 

Graph representation can be used to describe formation 

topology where a vertex in the graph shows an agent in the 

formation and an edge represents interaction between two 

agents. Let define a vertex and an edge set as 

 NvvV ,...,1 and   2, VvvE ji  , respectively for the 

graph  EVG ,  correspond with the system interaction 

topology. Graph G is assumed undirected, connected and has no 

multiple edges. Graph connectivity is necessary to keep 

formation control. Fig. 1 shows an undirected graph 

representation for an example with four agents.  

 

 

Fig. 1. Undirected graph representation for a reconfiguration 

problem in multi-agent formation. 

 

For the undirected graph G , the Laplacian matrix is defined 

 

 ADL  .   (3) 

 

where  
ijaA  and  

ijD  ,  NR, DA such that 1ija if and 

only if   Eji , , 
j

ijii a . The Laplacian L is symmetric, 

positive semi-definite. All of its eigenvalues are real that can 

be ordered as
N  ...21

. 

In a formation, each agent should keep a given distance with 

its neighbors as well as network connectivity is hold. In n-

dimension coordinate, desired distance between two 

nodes j and i  is defined as d

i

d

j

d

ij zzd  . The formation error 

between two connected neighbors j and i can be defined as 
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Whole system formation error can be stated as theorem 1 

([15]). 

 

Theorem 1. Consider a group of N mobile agents with 

double integrator dynamics (1). Whole group formation error 

can be stated as 
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where nILM 2 and L is Laplacian matric. 

Proof. Based on Laplacian definition (3), an entry of 

  N

ij RlL  is  
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Let to define vectors
i

d

ii ezz  ,
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jj ezz  , and in global 

form ezz d  .  
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Above relation can be rearranged as 
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By repeating again the above operation,   
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Finally,  
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Since nNRz 2 while NRL then we have to resize the 

Laplacian matrix by multiplying to an identity matrix with 

proper dimension. This is shown as nILM 2 where 

nNRM 2 . 

 

2.3. Topological Optimization Problem 
 

Assume  intint , EVG  is related with initial topology in the 

formation where V shows node set and
intE is the edge set. In 

the desired formation topology, graph  secsec , EVG   is desired 

as follow; the graph secG should be simple, no multiple edge and 

connected, while it has maximum algebraic connectivity. 

Maximum edge number at secG is defined as KE   sec . 

Therefore, the following optimization problem to maximize 

algebraic connectivity in the desired formation is proposed in 

this paper 
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Since  L2 is used in computing  sec

2 G , then they can 

used equivalently in analyzing of
2 . 

For a graph G with secE edges and N nodes, the Laplacian 

matric L also can be factorized as 
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2.4. Connection Modification 
 

When agent correspondence in desired formation is 

determined, agents should move to accomplish reconfiguration. 

Changing in agent correspondence should be start in this time, 

such that for each agent maybe some of its current connections 

will be leaved and some new will be appeared. This process is 

well to be continuously progressed during whole time interval. 

Inspired by continuous perceptron theory in neural networks, 

we proposed sigmoidal functions (14) and (15) to carrying the 

modify operation for agent correspondences. 
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where 0 is proportional to determining the steepness of the 

functions and constant c is a parameter to move the fire point in 

the functions to left or right side in the time interval. In other 

words, the sigmoidal functions do mapping on the time step 

vector t belong to a time interval ],0[ T depending on 

parameters of the steepness   and constant c  . In Fig. 2, (14) 

and (15) are shown for 10T , 1 and 5c .  

 

2.5. Nash Differential Games 
 

The multi-agent system dynamics (2) subject to a given 

initial state 0z is also can be considered as the state 

representation of a differential game. A finite horizon linear-

quadratic cost function for the each agent/player can be 

considered. A Nash equilibrium can be obtained as bellow. 
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Fig. 2. (a) Sigmoidal curve for add a connection, (b) Sigmoidal 

curve for leave a connection. 

 

Theorem 2. Consider a game with N players under state 

dynamics (2) and finite horizon linear-quadratic cost function 

for each player. The differential game has a unique linear 

feedback Nash equilibrium if and only if there exist a set of 

symmetric solution
iK  to the coupled differential equations 
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where T

iiiii BRBS 1 . Then unique open-loop Nash equilibrium 

for each initial state can be obtained as 
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Proof. The proof is given in [16]. 

 

MQif  , MQi  and 0ijR is weight matrix for control 

input. ifQ , iQ are symmetric and positive semi-definite.  

3. Case Study 
 

A case study with four agents is presented. Graph 

information for the initial and desired formations are given as, 

V=4, Eint=3, K=4. The agents' positions in initial and desired 

formations in two-dimensional coordinate are given as z= [2 2; 

2 4; 4 4; 4 2]T and zd= [10 8; 10 10; 11.41 9.41; 12 8]T vectors, 

respectively. The agents 1, 2, 3 and 4 in initial formation are 

neighbor with {2, 4}, {3, 1}, {2} and {1}, respectively while in 

second formation, each agents is neighbor with all the rest. 

 

   

   

   

   

   

   

   

   

Fig. 3. Different graph (interaction network) topologies with 

corresponding Fiedler eigenvalue. 
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In the desired formation, agent 3 placed closer to the rest 

agents and then it can sense all the rest agents. The system can 

move to the desired formation with different interaction 

topologies as shown at Fig. 3. In this figure, Fielder eigenvalue 

(algebraic connectivity parameter) of each network's topology is 

shown, also. Since the desired formation with maximum 

algebraic connectivity is well, then from Fig. 3, it can be seen 

which topology is most desirable.  

Because of small agent society size in this case study, 

possible graph topologies and selection of well topology was 

obtained simply through a manually solution to the 

optimization problem (13). In general, an algorithm is needed 

to solve (13). In [10], a greedy perturbation heuristic algorithm 

is proposed to solving the problem of adding edges from a set 

of candidate edge to a graph aiming to maximize the Fielder 

eigenvalue. We used this algorithm as a basis and proposed an 

algorithm as shown in Fig. 4 to solve (13). The algorithm uses 

the edge  ji, which cause the largest value of  2
ji vv  , where 

v is a Fiedler eigenvector of present Laplacian matrix.  

When agent correspondence is determined for desired 

formation, each agent Nash control strategy can be obtained by 

solutions presented in theorem 2. Also, the process of changing 

agent correspondence can be described continuously in time by 

using following incidence matrix, 

 

D(t)= [-1 0 -1 0; 1 -1 0 0; 0 1 0 g(.); 0 0 1 f(.)] 

 

Based on theorem 1 the formation error is directly related to 

Laplacian matrix. We use  dzzM   to compute formation 

error when the agents move to desired formation. As shown in 

Fig. 5, formation error magnitude using the topology 

with 22  is less than the case topology of 58.02  is used. 

This means that less control effort is needed to accomplish 

physically move to perform reconfiguration using the topology 

with largest
2 . 
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Fig. 4. Algorithm proposed to solve the optimization problem. 
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Fig. 5. (a) Formation error with λ2= 0.58, (b) Formation error 

with λ2= 2. 

 

4. Conclusions 
 

Algebraic connectivity is used as a parameter to design well-

structured formation topologies. An optimization problem is 

proposed to obtain topologies with maximum Fiedler 

eigenvalue. An algorithm is presented to solve the problem. 

Two sigmoidal functions are introduced to use in the incidence 

matrix of desired formation topology to make changes in the 

agent correspondence continuously in time. A case study is 

derived to measure formation error of a team with four agents 

when the different topologies are used. Results showed that the 

formation error is less when the topology has well connectivity 

and therefore minimum control effort is needed to accomplish 

reconfiguration. 
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