
A Layered UVM Based Testbench Design for SpaceWire

Ahmet Çağrı Bağbaba1, Buse Ustaoğlu1, İnan Erdem2, Berna Ors1

1 Istanbul Technical University, Istanbul, Turkey
bagbaba@itu.edu.tr, ustaoglubu@itu.edu.tr, Siddika.Ors@itu.edu.tr

2 Anka Microelectronic Systems, Istanbul, Turkey
inan.erdem@ankasys.com

Abstract
The Universal Verification Methodology is a standard which
is designed to enable creation of reusable, robust and in-
teroperable verification IP and testbench components. In
this work, we implemented layered UVM testbench for
SpaceWire which is a spacecraft communication network
based in part on the IEEE 1355 standard of communica-
tions. This design helps further analyzes of SpaceWire by
testing different SpaceWire layers such as exchange layer
and character layer. Transactions were used at all layer
of protocol and user can make analysis, coverage collect-
ing and debugging through this design. In the conclusion,
all simulator results and details about Verification IP design
were given.

1. Introduction
The main aim of verification of System on Chip (SoC) de-

signs is to provide that the design meets the functional require-
ments as defined in the functional specification. Also, another
goal is to ensure that the result of some transformation is as ex-
pected. Randomized stimulus for the chip inputs under control
of user-specified constraints or rules are generated by modern
testbench-based verification environment and this environment
also checks the results of each test automatically. There are
several verification methodologies in order to develop random-
constrained testbenches. Universal Verification Methodology
(UVM) is the best known verification method.

UVM is based on SystemVerilog classes and is powerful
OOP (Object Oriented Programming) [1]. Manual generation
of test vectors is the method of conventional functional verifi-
cation. However, manual generation of test vectors is not sup-
ported well in the verification. Hence, UVM-based verification
is important due to the fact that it automates the functional veri-
fication process [2]. Therefore, we created test environment for
SpaceWire [3] interface by using UVM. SpaceWire is a space-
craft communication network and based on the IEEE 1355 stan-
dard. It is point to point and full-duplex serial bus network. It is
widely used in satellite systems. In this work, we created Veri-
fication Intellectual Property (VIP) for SpaceWire interface and
simulated it in order to show that the interface works correctly.

In this work, a layered UVM based verification IP is de-
signed with an emphasis of making the analysis and reporting
easier for the verification of SpaceWire based designs. This im-
plementation can also be used as the SpaceWire VIP to help fur-
ther analyze the SpaceWire networks by looking into the data at
different SpaceWire layers in [4]. The implementation is emit-
ting transactions at all SpaceWire protocol layers to the user. At
the signal layer, the VIP emits the bits that it captures by de-

coding the DS-encoded Spacewire signals. The VIP itself uses
these transactions internally to capture the disconnect error con-
ditions and forwards them to the character encoder component.
The character encoder then takes the incoming bit streams and
extracts the SpaceWire characters and codes out of it. After
having a complete character or an error condition, then it emits
these character transactions to both upper layer, which is the
packet collection layer and also to the driver to help manage the
exchange layer tasks(link initialization, error recovery and flow
control). Once the packet collector gets the characters from the
character encoder, then it creates SpaceWire packets out of them
and emits them to the user. As a result, user has access to all the
transactions from signal level, through character level and up to
packet level. Therefore user can take transactions from any of
the above mentioned layer and do reporting, analysis, coverage
collection, debugging etc.

The implementation provides user also with the predefined
protocol level coverage data by using SystemVerilog cover-
group structures, which can be analyzed by the user to see if
all the corner cases of a SpaceWire communication was hit.

The rest of this paper is organized as follows: in Chapter
2, we introduced our Design Under Test (DUT), SpaceWire. In
Chapter 3, UVM is explained in detail. In Chapter 4, imple-
mentation and creating of test environment are given. In the
final chapter, we concluded this paper by summarizing imple-
mentation and novelty of this paper.

2. SpaceWire
SpaceWire is a data-handling network and uncomplicated

to design or implement. It also provides high-speed (2 Mbits/s
to 200 Mbits/s) full-duplex data links and bi-directional [5].
Using point-to-point data-links and routing switches provides
data-handling networks. SpaceWire helps reduce system in-
tegration costs and aims to encourage harmony between data-
handling equipment and subsystems. Moreover, the construc-
tion of high-performance on-board data-handling systems is re-
duced by SpaceWire [6]. Spacwire’s use began primarily in
European Space Agency but it is currently used by NASA and
many other organizations.

In Fig. 1 example SpaceWire architecture can be seen. In
this architecture, there are many instruments which are respon-
sible for different duties. Instrument 1 is for high data rates.
From Instrument 1 to Mass Memory Module point-to-point link
is used to stream data [6]. Point-to-point links in SpaceWire is
to connect a high-data rate instrument to a memory. Thanks to
point-to-point links (Instrument 1 in Fig. 1) packets can be sent
directly to the memory. Moreover, SpaceWire is a router-based
architecture. The router enables the implementation of more



complicated SpaceWire architectures. After the connection of
all SpaceWire units through router, any unit can send or receive
data from another unit [6].

Figure 1. Example SpaceWire Architecture [6]

There are 6 layers in SpaceWire as Physical Layer, Sig-
nal Layer, Character Layer, Exchange Layer, Packet Layer, and
Network Layer [3]. In Fig. 2, SpaceWire Open System In-
terconnection (OSI) Type Model can be seen. The Physical
Layer explains cables and connectors. The Signal Layer de-
fines voltage levels, encoding, and signaling rates. In the Char-
acter Layer, data is defined and control characters are used to
manage data across link. In the Exchange Layer, flow con-
trol, link error detection, link error recovery, and link initial-
ization are described. The Packet Layer handles transmission
over SpaceWire link. In the last layer, Network Layer, source to
destination node data transfers, and link errors are defined [7].

Figure 2. SpaceWire OSI Model [7]

In Physical and Signal Layers, Low Voltage Differential
Signaling (LVDS) is used to execute communications such as
packet and token passing accross a SpaceWire network. Also,
Data-Strobe (DS) Encoded LVDS is used to communicate full-
duplex, serial, and bi-directional data. In other words, DS en-
coding is used in SpaceWire in order to send information over
LVDS. In Fig 3, data and strobe signals are XORed and syn-
chronous clock is generated. The data values are transmitted

directly and the strobe signal changes state whenever the data
remains constant from one data bit interval to the next [6].

Figure 3. Data Strobe [7]

In the Character Layer, characters are defined as either
link or normal characters. Normal characters pass through a
SpaceWire network at a packet layer whereas link characters do
not pass. As can be shown in Fig. 4, FCT and ESC are the link
characters. ESC + FCT is the NULL control code and ESC +
data character is the Time Code. Normal Characters, EOP and
EEP, pass through a SpaceWire network at a packet layer. In
the Exchange Layer, state diagram of the initialization and er-
ror recovery sequence, shown in Fig 5, is vital for this work.
The flow starts or resets when an error is detected. These errors
can be parity error, escape error etc.

Figure 4. Character Layer [7]

Figure 5. Exchange Layer State Diagram [7]

3. Universal Verification Methodology
UVM provides flexible and well established solution for

complex system design verification. Since UVM consists of
reusable components and is supported by tools of all major ven-
dors of the industry, it is flexible [8]. In Fig 6, UVM testbench
is shown. UVM verification elements are listed below.

• Top Level: It is the top level of VIP and includes Desing
Under Test, uvm test, and interface.

• Design Under Test: In this work, SpaceWire is the
DUT. DUT’s funcionality is defined by using Hardware
Description Language (HDL) such as Verilog or VHDL.

• Interface: It provides communication between DUT
and verification environment. It also defines pin level
activity of DUT.



• Virtual Interface: It connects ”virtual” world to ”real”
world and also connects dynamic environment to RTL
model.

• uvm test: It is configurable and changeable depending
on design.

• uvm env (Environment): uvm env is used to create and
connect the uvm components like driver, monitors , se-
quencers etc. A environment class can also be used as
sub-environment in another environment.

• Transactions: A transaction is data item (packets, in-
structions etc.) which is eventually or directly processed
by the DUT.

• Agent: Agent includes driver, sequencer, and monitor.
If it is active, it should contain all three subtype. If it is
passive, it should only include the monitor.

• Monitor: The monitor’s aim is to extract signal infor-
mation and translate it into meaningful information to be
evaluated by other components. Therefore, it does not
drive any signals into the DUT.

• Driver: The driver pulls transactions from the sequencer
and sends them repetitively to the signal-level interface.
In other words, it is the block which interact with DUT.

• Sequencer: Sequencer sends the transaction to driver
and gets the response from the driver.

Figure 6. UVM Testbench [9]

Moreover, there are 4 phases in UVM as Build Phase, Con-
nect Phase, Run Phase, and Report Phase. In Build Phase, child
components, ports, and components are constructed and config-
ured. In Connect Phase, ports and exports of components are
connected. In Run Phase, main body of test is executed. In
Report Phase, the pass and fail status are reported.

3.1. Coverage

Coverage is a metric that we use it in order to measure ver-
ification progress and completeness. Coverage metrics tell us
what portion of the design has been activated during simulation
(that is the controllability quality of a testbench).

4. Implementation
In this study, layered structure is proposed because it facil-

itates the organization of the implementation. Link, character
and packet level information can be broadcasted the informa-
tion to outside.

Our implementation can be shown in Fig. 7. The structure
was explained in subsections.

Figure 7. Overall Structure

4.1. Top Module

The module includes all of the components and determines
the test code that is performed.

4.2. SpaceWire Slave

This unit is the DUT module which will be verified. Data
and strobe signals produce the clock. The incoming data is sam-
pled at the both positive and negative edges of the clock.

4.3. Test Library

Multiple tests can be used for observing different opera-
tions of the DUT and collecting variety of coverage results. We
have defined 3 different tests in our test library. One of them is
the base test and the other 2 are extended from it and add new
properties. TestBasic sends Nulls and FCTs to see link initial-
ization, TestAB sends N Char, Nulls, EEP, EOP and TimeCode
to generate a packet. Moreover, transmitter drives SpaceWire
slave, which is based on defined characters, in these tests.

4.4. Environment and Agent

There is one agent in the environment. Thus, these are com-
bined in this implementation and consist of driver, monitor and
sequencer components and connect ports between them.

4.5. Line Encoder

Line encoder is the monitor type component and it collects
the data bits from DUT via interface. It informs whether or not
a link disconnection. Moreover, it writes the data to the analysis
port and reach character encoder.

4.6. Character Encoder

Character encoder is also monitor type component. It writes
states to the status analysis port in order to inform the driver
about the status of the link before driving each single bits to the
link. Based on the size of the received bits some actions are
performed:

• Size of received bits = 2: The character type is de-
termined and the parity of the previous character is
checked. If there is a parity error, it is written to the
status analysis port. If not, the first bit of the previous
character is checked so as to determine it is control or
data character.



• Size of received bits = 4: The bits other than parity and
control flag are analysed. If the complete character is re-
ceived and the character type is CONTROL, it is checked
to determine whether or not it is an escape (ESC) charac-
ter. If ESC is caught, the character type will be a CODE.
Otherwise NON CHAR type of characters that are FCT,
EOP or EEP are determined based on the last 2 bits of
the received data of this size and written to the status
port (gotFCT or gotEOP or gotEEP flag is set to high).

• Size of received bits = 5: Character type is in CODE
state and the code type is NULL. First, it is checked that
if it is really a NULL character (ESC followed by FCT)
otherwise an ESC error is generated. The status port is
informed that a NULL code is received (gotNull flag is
set to high). Also the new NULL code is written out of
the character analysis port.

• Size of received bits = 10: In this situation, the character
type is DATA. It is checked that whether the complete
character is received or not and character type is changed
to the NON CHAR.

• Size of received bits = 14: Character type is in CODE
state and the code type is TIME. Parity is calculated and
the status port is informed that a TIME code is received
(gotTime flag is set to high). Also the new TIME code is
written out of the character analysis port.

4.7. Packet Collector

The another monitor type component catches the packets
and write the port for broadcasting them outside.

• Size of received bits = 4: If the previous character type
is DATA, it is followed by EOP and the current package
is valid otherwise it is discarded. If the previous charac-
ter type is CONTROL without a preceding DATA, it is
also discarded.

• Size of received bits = 8: It is a NULL character and not
part of the packet layer.

• Size of received bits = 10: DATA character is gotten.

• Size of received bits = 14: It is a TIME code. If it was
gotten before the required EOP, it is discarded.

4.8. Transmitter

Transmitter is derived from UVM driver. It is connected
to the line, character and packet encoder and depend on the in-
formation coming from the monitor type components. Line en-
coder informs the driver about the link status via received bits
port, so the status of the link is checked, before driving each sin-
gle bits to the link. At the same time character encoder notifies
the error situations and gotten character types via a status port
as mentioned in the previous sections. Moreover, credit error is
handled in transmitter.

• ERROR RESET: It is start point. If any error occurs in
each state, they directly get back to this state.

• ERROR WAIT: Rx is enabled. If there are any of the
RX, FCT, N-Char or Time-Code error, it passes to the
READY state after 12.8 us otherwise it returns RESET
state.

• READY: Link is enabled. Unless any of the Rx, FCT,
N-Char or Time-Code errors occur, it passes to the
STARTED state otherwise it returns RESET state.

• STARTED: NULLs are sent. Unless one of the Rx,
FCT, N-Char or Time-Code error information it returns
RESET state. It passes to the CONNECTING state after
gotNULL.

• CONNECTING: FCTs are started to be sent. If one of
the Rx, N-Char or Time-Code error , it returns RESET
state. It passes to the RUN state after gotFCT .

• RUN: N Chars are started to be sent. It gets back to RE-
SET state if RX or credit error occur. Credit error is han-
dled in this state by checking number of N Chars which
can be sent when the FCT is received or the expected
N Chars which is transmitted based on the number of
FCTs as in the protocol.

4.9. SpaceWire Interface

There are Spacewire DUT input and output signals in the
interface which acts as a bridge and the DUT is became a black-
box. Driver component sends bits to the DUT and line encoder
collects the bits via this bridge.

4.10. Sequence Library

Sequence library includes sequence items and sends them
to the sequencer. In our implementation Status, Bit, Transfer,
EEP, EOP, FCT, Null, TimeCode are used as sequence items.
Then, these sequence items are randomized and sorted and get
through to the driver.

4.11. Coverage Collector

Coverage collector is derived from UVM subscriber. It re-
ceives bits , characters, packets and status from related monitor
type components and creates covergroups. These groups iden-
tify portions of the design that were never activated during sim-
ulation, which allows us to adjust our input stimulus to improve
verification.

5. Simulation Results
The implementation has been simulated with Mentor

Graphics QuestaSim 10.3 version.

5.1. Operational Results

Figure 8. Clock Synchronization

Fig. 8 shows the signal level activity. As soon as Data and
Strobe signals are sent within this period, they are synchronised
and clock is generated. As a result, state transition is completed
from beginning to the last state.

Link initialization transaction level activity can be seen in
Fig. 9. STARTED state is returned to the RESET state a couple
of times because the length of time since the last transition on
Data or Strobe lines are sent longer than timeout period (850
ns).



Figure 9. Link Initialization

Figure 10. Started and Connect States

Fig. 10 shows the NULL and FCT character transactions in
STARTED and CONNECTING state.

In Fig. 11, RUN state is showed. After N Char is sent, it
stays at the RUN state by keeping on sending NULLs.

Figure 11. Run State

Figure 12. Credit Error

Figure 13. Credit Error

In Fig. 12, there are 9 FCTs which are sent to DUT but
it causes credit error because the credit counter(N Chars ex-
pacted) shall hold a maximum credit count of 56 due to the
receive buffer capacity. Also, in Fig. 13, 9 N Chars are trans-
mitted after a FCT has sent which results in credit error, be-
cause for each FCT receive buffer can accommodate maximum
8 N Chars.

5.2. Coverage Results

Fig. 14 shows coverage results. The declared covergroups
can be seen explicitly in this graphic. For example, character
and code covergroups have %100 coverage but Rx and credit
errors have no coverage because these situation never occurs in
the performed test. Multiple tests should be defined so as to take
more valid results.

6. Conclusion
The layered UVM based VIP for SpaceWire protocol is im-

plemented. The graphics give the VIP is the compatible with

Figure 14. Coverage

the the protocol specifications and errors are handled success-
fully. From bottom layer to top layer implementation provides a
compact structure. Signals, characters and packets are received
and written to the analysis ports, and transmitter takes status
information from all layers. Users can observe the results and
debug the codes in the transaction level more easily. Coverage
results give more general idea and detailed coverage definitions
and multiple tests are planned as the next work.

7. References
[1] Geng Zhong; Jian Zhou; Bei Xia, ”Parameter and UVM,

making a layered testbench powerful,” ASIC (ASICON),
2013 IEEE 10th International Conference on , vol., no.,
pp.1,4, 28-31 Oct. 2013

[2] Neumann, F.; Sathyamurthy, M.; Kotynia, L.; Hennig,
E.; Sommer, R., ”UVM-based verification of smart-sensor
systems,” Synthesis, Modeling, Analysis and Simulation
Methods and Applications to Circuit Design (SMACD),
2012 International Conference on , vol., no., pp.21,24, 19-
21 Sept. 2012

[3] ECSS-E-50-12A(24 January 2003), SpaceWire, Links,
Nodes, Routers and Networks

[4] Stohlmann, K.; Fey, G.; Ludtke, D., ”Automatic perfor-
mance tracking of a SpaceWire network,” in SpaceWire
Conference (SpaceWire), 2014 International , vol., no.,
pp.1-5, 22-26 Sept. 2014

[5] S.M. Parkes, ”SpaceWire: The Standard”, Proceedings,
DASIA 99, Data Systems In Aerospace, 17-21 May 1999,
Lisbon, Portugal, pp111-116, European Space Agency
(ESA) publication no. SP-447, ISBN 92-9092-788-7.

[6] SpaceWire User’s Guide (2012). [Online]. Avail-
able: https://www.star-dundee.com/knowledge-
base/spacewire-users-guide

[7] Aeroflex Colorado Springs Application
Note. AN-SPW-004-002 [Online]. Available:
http://ams.aeroflex.com/pagesproduct/appnotes
/SpWin6PagesApNote.pdf

[8] Madan, R.; Kumar, N.; Deb, S., ”Pragmatic approaches
to implement self-checking mechanism in UVM based
TestBench,” in Computer Engineering and Applications
(ICACEA), 2015 International Conference on Advances in
, vol., no., pp.632-636, 19-20 March 2015

[9] Fitzpatrick, T. [Online]. Available:
https://verificationacademy.com/cookbook


