
Self-Tuning Speed Control of Permanent Magnet DC Motor 
 

Mehmet ARICI
1
 and Ali Osman ARSLAN

2
 

 

1
 Department of Electrical and Electronics Engineering, University of Gaziantep, Gaziantep, Turkey 

mehmetarici@gantep.edu.tr, 
2
 Department of Electrical and Electronics Engineering, University of Gaziantep, Gaziantep, Turkey 

aoarslan@gantep.edu.tr,  
 

 

Abstract 
 

In this study, speed control problem of a permanent magnet 

DC motor considered in the existence of disturbance and 

unknown plant parameters. Self-tuning adaptive control 

technique is used to solve the problem. Firstly, an ARX 

model of the plant is considered with recursive identification 

of its parameters then the parameters and predefined 

performance criteria is combined to design an adaptive 

controller. The effectiveness of the control method is tested 

via simulations. 

 

1. Introduction 
  

 The area of adaptive control has been improved 

significantly in recent years. The goal of the approach is to find 

a solution to controller design for processes which are 

sufficiently known and change over time. Several approaches 

have been proposed in this field. Self-tuning controller (STC) is 

one of them and it has shown great potential and success. 

The basic idea behind STCs is obtaining the estimates 

of the process parameter and updating them recursively and 

finally obtaining controller parameters from the solution of a 

design problem using estimated process parameters. This 

adaptive control scheme consists of the process and a feedback 

controller. As the name suggests the controller automatically 

tunes its parameters to obtain the desired properties of the 

closed loop system. STC scheme is very flexible with respect to 

the choice of the underlying design and estimation methods. A 

number of researchers studied on STC which is a member of 

adaptive control techniques [1-4]. 

 

On-line determination of process parameters is a key 

element in self-tuning control. A recursive parameter estimator 

is an important component of a self-tuning control system. 

Parameter estimation also occurs implicitly in a model-reference 

adaptive controller. Therefore system identification for self-

tuning control has a great importance. A general structure of 

STC is given in Figure 1. In this study, speed control of a 

permanent magnet DC motor considered in the existence of 

disturbance and unknown plant parameters. Firstly, DC motor 

model structure and control method is chosen. An ARX model 

with recursive identification and pole placement control method 

is chosen for DC motor speed control. The effectiveness of the 

control method is tested via simulations. 

 

 

2. General Structure of the Self Tuning Control 

System 
 

Recursive least squares approach is used to estimate plant 

parameters since the method is reliable and simple. Recursive 

estimation gives the opportunity to monitor changes in the 

characteristics(parameters) of the process in real time and 

therefore form the basis for self-tuning controllers [2]. 

 
 

Fig. 1. Self-tuning controller general structure 

In recursive least squares method regressor vector and 

output vector are respectively: 
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Parameter estimation algorithm in this case is defined by 

following expressions: 
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where P(t) is covariance matrix. In order to design 

pole placement control the system represented by noise free 

ARX model is considered: 

 
       1 1  dA q y t q B q u t  

 (6) 

The control law of the PPC (pole placement control) is 

defined as: 
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Where the control polynomials F(q-1) and G( q-1) are 

respectively, defined as 
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Recommended orders of polynomials are respectively 

nf=nb+d – 1 and ng = na-1. 

The system closed loop transfer function is given by 
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The aim is to design the closed loop poles to a 

specified location by letting the characteristic equation of 2 to a 

predefined design polynomial Γ(q-1) 
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The desired transient response is designed by using the 

Diophantine equation 12 
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By assigning poles for the closed loop system the 

steady state gain will be affected. Using the final values theorem 

the closed loop steady state gain is computed as 

 

 
 

 

 
1

1

1

1

1

Γ 1Γ

d

q

B q M B M
SSG q

q










 
  
  

 (14) 

The idea is to design M such that SSG =1, hence the 

compensator for such a SSG is then 
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This approach cancels the offset due to Γ(q-1) on the 

closed loop SSG so that there is no model mismatch, the steady 

state output match the reference signal r(t) [1]. The block 

diagram of the STC with pole placement approach is given in 

Figure 2. 

1  

Fig. 2. Pole-placement controller with compensator 

 

3. Self-Tuning Control for DC Motor 
 

The knowledge of the plant order is an important step 

thus we use here a generic transfer function of the plant desired 

to control: 
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In order to apply recursive least squares approach an 

ARX DC motor model is obtained as given below: 
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and   parameter vector is as the follows: 

 
 1  2 0  1 2  a a b b b 

 (18) 

 

Using the approximated model of DC motor discrete time 

transfer function in equation 17, DC motor system has na = 2, nb 

=1 and d = 1 is given by 
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The open-loop poles of the system are unknown at the 

beginning. The aim is to achieve a critically damped response 

such that repeated closed-loop poles are defined to be 0.5 and 

0.5, so that  
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The Diophantine equation for nf =1 and ng =1 

becomes 
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By equating coefficients of like powers, the above 

expression may be reformulated in the convenient form: 
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The unknown controller parameters may be computed 

directly from the equation via matrix inversion or using 

Cramer’s rule: 
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p is the determinant of the matrix and 


represents 

desired pole locations.  In order to compensate for the steady-

state error, which occurs by relocating the original open-loop 

poles, the compensator M is introduced; 
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The control action can then be determined from 

Equation 6 which may be expressed in the difference equation 

form as 
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4. Simulation and Experimental Results 
 

An approximated model of the real system discrete time transfer 

function is given in the following form: 
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DC motor system has na = 2, nb =1 and d = 1 is given 

by 
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The open-loop poles of the system are -0.3372 and 

0.2372. The aim is to achieve a fast critically damped response 

such that repeated closed-loop poles are defined to be 0.05 and 

0.05, so that  
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Firstly, discrete time DC motor model is placed into 

simulation block in the presence of noise. Then RLS algorithm 

and pole placement controller is adapted to the model by using 

embedded code blocks. System parameters are updated and then 

updated parameters are used in the control system algorithm to 

generate control signal so that DC motor follows desired speed 

set point. In real applications we do not have the knowledge 

about real system parameters. Here, a system with exactly 

known parameters is used in order to check RLS algorithm 

works properly. It can be seen from Figure 3 that tuned 

parameters of DC motor converge to actual values. 

  
 

Fig. 3. Self-tuning control of DC motor speed simulation 

block structure 

 

  
 

Fig. 4. RLS Parameter Estimator Block Structure 

 

Pole placement control (PPC) algorithm is used to control 

online parameter estimated system. Block structure of PPC is 

shown in Figure 5. 



  
 

Fig. 5. Pole-placement control block structure 

 

In the simulations, simulation step time is chosen as 

0.001 s controlled system is run 100 s and we see that in the 

presence of the noise system parameters updated and after 5 s 

parameters are almost settled to their exact values we use this 

parameters in the PPS and generate desired control input. 

Controlled system response to a square wave and sawtooth 

inputs with 1s periods can be seen in Figure 6 and Figure 7. 

 
 

Fig. 6. Square wave input response 

 

 
 

Fig. 7. Sawtooth wave input response 

 

6. Conclusions 
 

Speed control problem of a permanent magnet DC 

motor considered in the existence of disturbance and unknown 

plant parameters. Self-tuning adaptive control technique is used 

to solve the problem. Different types of reference input are 

applied to see the performance of the controller.  It can be seen 

from the simulations that RLS estimator calculates the plant 

parameters accurately and PPC controller regulates the speed in 

the presence of noise. Furthermore speed of response of 

controller is satisfactory. 

 

7. References 
 

 [1] D.W. Clarke, P.J. Gawthrop "Self-tuning control",  

Proceedings of the Institution of Electrical Engineers vol. 

126, no. 6, pp. 633-640,  June, 1979. 

[2] K.J. Astrom, U. Borisson. “Theory and applications of self-

tuning regulators”, Automatica vol.13, pp. 457-476, 1977. 

[3] P.E. Wellstead, D. Prager “Pole assignment self-tuning 

regulator” Proceedings of the Institution of Electrical 

Engineers vol. 126, no. 6, pp. 781-787,  June, 1979. 

[4] R. Isermann. “Parameter adaptive control algorithms-A 

tutorial”, vol.18, no.5, pp. 513-528, September 1982. 

[5] V. Bobal, J.Böhm, "Digital Self-tuning Controllers", 

Springer-Verlag , London, England, 2005.  

[6] Z. Vukic, "A tutorial on adaptive control: The Self-tuning 

approach", University of Zagreb Department of Control and 

Computer Engineering, Zagreb, 2000. 

[7] T. Kara, "Self-tuning control lecture notes", University of 

Gaziantep Department of Electrical and Electronics 

Engineering, 2013.  

[8] P. Wellstead and M. Zarrop, “Self-tuning Systems” 

Chichester: John Wiley & Sons, 1991. 

[9] P. E. Wellstead, J. M. Edmunds, D. I. Prager, and P. M. 

Zanker, “Pole zero assignment self-tuning regulator,” 

International Journal of Control, vol. 30, pp. 1–26, 1979. 

[10] K. J. ˚Astr¨om and B. Wittenmark, “Self-tuning controller 

based on pole-zero placement,” IEE-Procedings D, vol. 

127, pp. 120–130, 1980.  

 

 

 


